From MHV amplitudes
 to the CHY formulation

Song He

Institute of Theoretical Physics, Chinese Academy of Sciences
Based on works with Freddy Cachazo \& Ellis Yuan
MHV @ 30, Fermilab
Mar 19th, 2016

MHV amplitudes \& Parke-Taylor formula

MHV amplitudes \& Parke-Taylor formula

A miracle for n-gluon scattering [Parke,Taylor '86; Mangno, Parke, Xu '87]

$$
M_{n}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n-1 n\rangle\langle n 1\rangle} .
$$

MHV amplitudes \& Parke-Taylor formula

A miracle for n-gluon scattering [Parke,Taylor '86; Mangno, Parke, Xu '87]

$$
M_{n}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n-1 n\rangle\langle n 1\rangle} .
$$

Numerous progress in the past 30 years [c.f. all the wonderful talks]

MHV amplitudes \& Parke-Taylor formula

A miracle for n-gluon scattering [Parke,Taylor '86; Mangno, Parke, Xu '87]

$$
M_{n}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n-1 n\rangle\langle n 1\rangle} .
$$

Numerous progress in the past 30 years [c.f. all the wonderful talks]
The formula itself: crucial for new formulations of amplitudes!

MHV amplitudes \& Parke-Taylor formula

A miracle for n-gluon scattering [Parke,Taylor '86; Mangno, Parke, Xu '87]

$$
M_{n}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n-1 n\rangle\langle n 1\rangle} .
$$

Numerous progress in the past 30 years [c.f. all the wonderful talks]
The formula itself: crucial for new formulations of amplitudes!
numerator: effective $\mathcal{N}=4$ SUSY $\rightarrow \delta^{8}\left(\sum_{i=1}^{n} \lambda_{i} \eta_{i}\right)$ [Nair '88]

MHV amplitudes \& Parke-Taylor formula

A miracle for n-gluon scattering [Parke,Taylor '86; Mangno, Parke, Xu '87]

$$
M_{n}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n-1 n\rangle\langle n 1\rangle} .
$$

Numerous progress in the past 30 years [c.f. all the wonderful talks]
The formula itself: crucial for new formulations of amplitudes!
numerator: effective $\mathcal{N}=4$ SUSY $\rightarrow \delta^{8}\left(\sum_{i=1}^{n} \lambda_{i} \eta_{i}\right)$ [Nair '88] denominator as correlator on $\mathbb{C P}^{1}$ with punctures $z_{i} \sim\left(1, \sigma_{i}\right)$:

MHV amplitudes \& Parke-Taylor formula

A miracle for n-gluon scattering [Parke,Taylor '86; Mangno, Parke, Xu '87]

$$
M_{n}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n-1 n\rangle\langle n 1\rangle} .
$$

Numerous progress in the past 30 years [c.f. all the wonderful talks]
The formula itself: crucial for new formulations of amplitudes!
numerator: effective $\mathcal{N}=4$ SUSY $\rightarrow \delta^{8}\left(\sum_{i=1}^{n} \lambda_{i} \eta_{i}\right)$ [Nair '88] denominator as correlator on $\mathbb{C P}^{1}$ with punctures $z_{i} \sim\left(1, \sigma_{i}\right)$:

$$
\operatorname{PT}(1,2, \ldots, n):=\frac{1}{(12)(23) \cdots(n 1)} \sim \frac{1}{\left(\sigma_{1}-\sigma_{2}\right) \cdots\left(\sigma_{n}-\sigma_{1}\right)} .
$$

Witten's twistor string theory [Witten '03]

Witten's twistor string theory [Witten ${ }^{\text {'03] }}$

N^{k} MHV amps \sim degree- $(k-1)$ curves $\mathcal{Z}\left(z_{i}\right)$ in twistor space!

Witten's twistor string theory [Witten '03]

N^{k} MHV amps \sim degree- $(k-1)$ curves $\mathcal{Z}\left(z_{i}\right)$ in twistor space!
Triggered new wave for the past decade... two prescriptions:

Witten's twistor string theory [Witten ${ }^{\text {003] }}$

$\mathrm{N}^{k} \mathrm{MHV}$ amps \sim degree- $(k-1)$ curves $\mathcal{Z}\left(z_{i}\right)$ in twistor space!
Triggered new wave for the past decade... two prescriptions:

- $k-1$ lines or product of $k-1$ MHV vertices: CSW rules

Witten's twistor string theory [Witten '03]

$\mathrm{N}^{k} \mathrm{MHV}$ amps \sim degree- $(k-1)$ curves $\mathcal{Z}\left(z_{i}\right)$ in twistor space!
Triggered new wave for the past decade... two prescriptions:

- $k-1$ lines or product of $k-1$ MHV vertices: CSW rules
- connected or RSV-Witten formula: a closed formula with integrals localized by degree- $(k-1)$ constraints

Witten's twistor string theory [Witten ${ }^{\text {'03] }}$

$\mathrm{N}^{k} \mathrm{MHV}$ amps \sim degree- $(k-1)$ curves $\mathcal{Z}\left(z_{i}\right)$ in twistor space!
Triggered new wave for the past decade... two prescriptions:

- $k-1$ lines or product of $k-1$ MHV vertices: CSW rules
- connected or RSV-Witten formula: a closed formula with integrals localized by degree- $(k-1)$ constraints

$$
M_{n, k}^{\mathcal{N}=4} \sim \int d^{2 n} z \prod \delta_{n, k}^{(\mathcal{N}=4)}(\{\lambda, \tilde{\lambda}, \eta\} ; z) \operatorname{PT}(1,2, \ldots, n)
$$

Witten's twistor string theory [Witten ${ }^{\text {'03] }}$

N^{k} MHV amps \sim degree- $(k-1)$ curves $\mathcal{Z}\left(z_{i}\right)$ in twistor space!
Triggered new wave for the past decade... two prescriptions:

- $k-1$ lines or product of $k-1$ MHV vertices: CSW rules
- connected or RSV-Witten formula: a closed formula with integrals localized by degree- $(k-1)$ constraints

$$
M_{n, k}^{\mathcal{N}=4} \sim \int d^{2 n} z \prod \delta_{n, k}^{(\mathcal{N}=4)}(\{\lambda, \tilde{\lambda}, \eta\} ; z) \operatorname{PT}(1,2, \ldots, n) .
$$

PT from string correlator, and for all helicity amplitudes!

Witten's twistor string theory [Witten '03]

$\mathrm{N}^{k} \mathrm{MHV}$ amps \sim degree- $(k-1)$ curves $\mathcal{Z}\left(z_{i}\right)$ in twistor space!
Triggered new wave for the past decade... two prescriptions:

- $k-1$ lines or product of $k-1$ MHV vertices: CSW rules
- connected or RSV-Witten formula: a closed formula with integrals localized by degree- $(k-1)$ constraints

$$
M_{n, k}^{\mathcal{N}=4} \sim \int d^{2 n} z \prod \delta_{n, k}^{(\mathcal{N}=4)}(\{\lambda, \tilde{\lambda}, \eta\} ; z) \operatorname{PT}(1,2, \ldots, n) .
$$

PT from string correlator, and for all helicity amplitudes!
Twistor-string formulas for $\mathcal{N}=8$ supergravity (PT replaced by Hodges determinants/BGK formula) [Cachazo, Skinner '12...]

A formulation of S-matrix in massless QFT's

A formulation of S-matrix in massless QFT's

These theories are still very special \Rightarrow natural questions:

A formulation of S-matrix in massless QFT's

These theories are still very special \Rightarrow natural questions:

- general dimensions, no supersymmetry?
- general theories: Yang-Mills, gravity, EFT's...?
- generalizations to loop level?

A formulation of S-matrix in massless QFT's

These theories are still very special \Rightarrow natural questions:

- general dimensions, no supersymmetry?
- general theories: Yang-Mills, gravity, EFT's...?
- generalizations to loop level?

One answer: CHY formulation [Cachazo, He, Yuan '13-]

A formulation of S-matrix in massless QFT's

These theories are still very special \Rightarrow natural questions:

- general dimensions, no supersymmetry?
- general theories: Yang-Mills, gravity, EFT's...?
- generalizations to loop level?

One answer: CHY formulation [Cachazo, He, Yuan '13-]

- compact formulas for gravitons, gluons, scalars,...

A formulation of S-matrix in massless QFT's

These theories are still very special \Rightarrow natural questions:

- general dimensions, no supersymmetry?
- general theories: Yang-Mills, gravity, EFT's...?
- generalizations to loop level?

One answer: CHY formulation [Cachazo, He, Yuan '13-]

- compact formulas for gravitons, gluons, scalars,...
- gauge invariance, soft theorems, double-copy etc. manifest

A formulation of S-matrix in massless QFT's

These theories are still very special \Rightarrow natural questions:

- general dimensions, no supersymmetry?
- general theories: Yang-Mills, gravity, EFT's...?
- generalizations to loop level?

One answer: CHY formulation [Cachazo, He, Yuan '13-]

- compact formulas for gravitons, gluons, scalars,...
- gauge invariance, soft theorems, double-copy etc. manifest
- loops: an unorthodox rep of loop integrand [Geyer et al '14]

A formulation of S-matrix in massless QFT's

These theories are still very special \Rightarrow natural questions:

- general dimensions, no supersymmetry?
- general theories: Yang-Mills, gravity, EFT's...?
- generalizations to loop level?

One answer: CHY formulation [Cachazo, He, Yuan '13-]

- compact formulas for gravitons, gluons, scalars,...
- gauge invariance, soft theorems, double-copy etc. manifest
- loops: an unorthodox rep of loop integrand [Geyer et al '14]

Deep connections to string theory; ambi-twistor strings or chiral, infinite-tension limit [Mason, Skinner '13; Berkovits '13; Siegel '15...]

Motivations: properties of Parke-Taylor factors

Motivations: properties of Parke-Taylor factors

- cyclicity, reflection, $\mathrm{SL}(2, \mathbb{C})$ transformation etc.

Motivations: properties of Parke-Taylor factors

- cyclicity, reflection, $\mathrm{SL}(2, \mathbb{C})$ transformation etc.
- U(1) decoupling identity (and Kleiss-Kuijf relations) $P T(1,2,3 \ldots, n)+P T(2,1,3, \ldots, n)+\cdots+P T(2, \ldots, n-1,1, n)=0$

Algebraically: ($n-2$)! independent PT factors

Motivations: properties of Parke-Taylor factors

- cyclicity, reflection, $\mathrm{SL}(2, \mathbb{C})$ transformation etc.
- U(1) decoupling identity (and Kleiss-Kuijf relations) $P T(1,2,3 \ldots, n)+P T(2,1,3, \ldots, n)+\cdots+P T(2, \ldots, n-1,1, n)=0$ Algebraically: $(n-2)$! independent PT factors
- Bern-Carrasco-Johansson (BCJ) partial-amp relations (?):

$$
\begin{aligned}
& s_{12} P T(2,1,3, \ldots, n)+\left(s_{12}+s_{13}\right) P T(2,3,1, \ldots, n) \\
& +\cdots+\left(s_{12}+\cdots+s_{1 n-1}\right) P T(2, \ldots, n-1, n)=0,
\end{aligned}
$$

if and only if $\sum_{b=2}^{n} \frac{s_{1}(* b)}{(1 b)}=0$! Similarly for $a=2, \ldots, n$.

Motivations: properties of Parke-Taylor factors

- cyclicity, reflection, $\mathrm{SL}(2, \mathbb{C})$ transformation etc.
- U(1) decoupling identity (and Kleiss-Kuijf relations)
$P T(1,2,3 \ldots, n)+P T(2,1,3, \ldots, n)+\cdots+P T(2, \ldots, n-1,1, n)=0$
Algebraically: $(n-2)$! independent PT factors
- Bern-Carrasco-Johansson (BCJ) partial-amp relations (?):

$$
\begin{aligned}
& s_{12} P T(2,1,3, \ldots, n)+\left(s_{12}+s_{13}\right) P T(2,3,1, \ldots, n) \\
& +\cdots+\left(s_{12}+\cdots+s_{1 n-1}\right) P T(2, \ldots, n-1, n)=0,
\end{aligned}
$$

if and only if $\sum_{b=2}^{n} \frac{s_{1}(* b)}{(1 b)}=0$! Similarly for $a=2, \ldots, n$.

- Satisfied on support of twistor-string constraints [Cachazo '12]. BCJ universal: consider these equations in general!

Scattering equations [see also Dolan's talk]

Universal, independent of dim or theory: scattering equations

Scattering equations [see also Dolan's talk]

Universal, independent of dim or theory: scattering equations

$$
E_{a}:=\sum_{\substack{b=1 \\ b \neq a}}^{n} \frac{s_{a b}}{\sigma_{a}-\sigma_{b}}=0, \quad \forall a \in\{1,2, \ldots, n\}
$$

Scattering equations [see also Dolan's talk]

Universal, independent of dim or theory: scattering equations

$$
E_{a}:=\sum_{\substack{b=1 \\ b \neq a}}^{n} \frac{s_{a b}}{\sigma_{a}-\sigma_{b}}=0, \quad \forall a \in\{1,2, \ldots, n\}
$$

key idea: auxiliary space that "knows" locality \& unitarity

Scattering equations [see also Dolan's talk]

Universal, independent of dim or theory: scattering equations

$$
E_{a}:=\sum_{\substack{b=1 \\ b \neq a}}^{n} \frac{s_{a b}}{\sigma_{a}-\sigma_{b}}=0, \quad \forall a \in\{1,2, \ldots, n\}
$$

key idea: auxiliary space that "knows" locality \& unitarity

- kinematic space of n massless particles \mathcal{K}_{n}

Scattering equations [see also Dolan's talk]

Universal, independent of dim or theory: scattering equations

$$
E_{a}:=\sum_{\substack{b=1 \\ b \neq a}}^{n} \frac{s_{a b}}{\sigma_{a}-\sigma_{b}}=0, \quad \forall a \in\{1,2, \ldots, n\}
$$

key idea: auxiliary space that "knows" locality \& unitarity

- kinematic space of n massless particles \mathcal{K}_{n}
- moduli space of n-punctured Riemann spheres $\mathcal{M}_{0, n}$

Scattering equations [see also Dolan's talk]

Universal, independent of dim or theory: scattering equations

$$
E_{a}:=\sum_{\substack{b=1 \\ b \neq a}}^{n} \frac{s_{a b}}{\sigma_{a}-\sigma_{b}}=0, \quad \forall a \in\{1,2, \ldots, n\}
$$

key idea: auxiliary space that "knows" locality \& unitarity

- kinematic space of n massless particles \mathcal{K}_{n}
- moduli space of n-punctured Riemann spheres $\mathcal{M}_{0, n}$
- the equations map singularities in \mathcal{K}_{n} to those of $\mathcal{M}_{0, n}$

Scattering equations [see also Dolan's talk]

Universal, independent of dim or theory: scattering equations

$$
E_{a}:=\sum_{\substack{b=1 \\ b \neq a}}^{n} \frac{s_{a b}}{\sigma_{a}-\sigma_{b}}=0, \quad \forall a \in\{1,2, \ldots, n\}
$$

key idea: auxiliary space that "knows" locality \& unitarity

- kinematic space of n massless particles \mathcal{K}_{n}
- moduli space of n-punctured Riemann spheres $\mathcal{M}_{0, n}$
- the equations map singularities in \mathcal{K}_{n} to those of $\mathcal{M}_{0, n}$
\Rightarrow massless tree amps from solutions of the equations on $\mathcal{M}_{0, n}$

Four points

Four points

\mathcal{K}_{4} has three singularities $\left\{s_{12}, s_{13}, s_{14}\right\} \rightarrow 0$

Four points

\mathcal{K}_{4} has three singularities $\left\{s_{12}, s_{13}, s_{14}\right\} \rightarrow 0$
$\mathcal{M}_{0,4}$ has three singularities: e.g. $\sigma_{1} \rightarrow\{0,1, \infty\}$ when we fix $\left\{\sigma_{2}, \sigma_{3}, \sigma_{4}\right\}=\{0,1, \infty\}$ using $\operatorname{SL}(2, \mathbb{C})$ redundancy

Four points

\mathcal{K}_{4} has three singularities $\left\{s_{12}, s_{13}, s_{14}\right\} \rightarrow 0$
$\mathcal{M}_{0,4}$ has three singularities: e.g. $\sigma_{1} \rightarrow\{0,1, \infty\}$ when we fix $\left\{\sigma_{2}, \sigma_{3}, \sigma_{4}\right\}=\{0,1, \infty\}$ using $\operatorname{SL}(2, \mathbb{C})$ redundancy
The equations (one independent) connect them: $\sigma_{1}=-\frac{s_{12}}{s_{14}}$

Four points

\mathcal{K}_{4} has three singularities $\left\{s_{12}, s_{13}, s_{14}\right\} \rightarrow 0$
$\mathcal{M}_{0,4}$ has three singularities: e.g. $\sigma_{1} \rightarrow\{0,1, \infty\}$ when we fix $\left\{\sigma_{2}, \sigma_{3}, \sigma_{4}\right\}=\{0,1, \infty\}$ using $\operatorname{SL}(2, \mathbb{C})$ redundancy
The equations (one independent) connect them: $\sigma_{1}=-\frac{s_{12}}{s_{14}}$
Higher points: multi-factorizations vs. higher-dim singularities

CHY formulation

Tree amps $=$ contour integral in $\mathcal{M}_{n, 0}=$ sum over solutions

$$
M_{n}=\int \underbrace{\frac{d^{n} \sigma}{\operatorname{vol~SL}(2, \mathbb{C})} \prod_{a}^{\prime} \delta\left(E_{a}\right)}_{d \mu_{n}} \mathcal{I}(\{k, \epsilon, \sigma\})=\sum_{\{\sigma\} \in \text { solns. }} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}
$$

CHY formulation

Tree amps $=$ contour integral in $\mathcal{M}_{n, 0}=$ sum over solutions

$$
M_{n}=\int \underbrace{\frac{d^{n} \sigma}{\operatorname{vol} \mathrm{SL}(2, \mathbb{C})} \prod_{a}^{\prime} \delta\left(E_{a}\right)}_{d \mu_{n}} \mathcal{I}(\{k, \epsilon, \sigma\})=\sum_{\{\sigma\} \in \text { solns. }} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}
$$

- $d \mu_{n}$ contains $n-3$ integrals and $n-3$ delta functions

CHY formulation

Tree amps $=$ contour integral in $\mathcal{M}_{n, 0}=$ sum over solutions

$$
M_{n}=\int \underbrace{\frac{d^{n} \sigma}{\operatorname{vol} \mathrm{SL}(2, \mathbb{C})} \prod_{a}^{\prime} \delta\left(E_{a}\right)}_{d \mu_{n}} \mathcal{I}(\{k, \epsilon, \sigma\})=\sum_{\{\sigma\} \in \text { solns. }} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}
$$

- $d \mu_{n}$ contains $n-3$ integrals and $n-3$ delta functions
- J is the Jacobian from solving the equations: $J \sim\left|\frac{\partial E_{a}}{\partial \sigma_{b}}\right|$

CHY formulation

Tree amps $=$ contour integral in $\mathcal{M}_{n, 0}=$ sum over solutions

$$
M_{n}=\int \underbrace{\frac{d^{n} \sigma}{\operatorname{vol} \mathrm{SL}(2, \mathbb{C})} \prod_{a}^{\prime} \delta\left(E_{a}\right)}_{d \mu_{n}} \mathcal{I}(\{k, \epsilon, \sigma\})=\sum_{\{\sigma\} \in \text { solns. }} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}
$$

- $d \mu_{n}$ contains $n-3$ integrals and $n-3$ delta functions
- J is the Jacobian from solving the equations: $J \sim\left|\frac{\partial E_{a}}{\partial \sigma_{b}}\right|$
"CHY integrand" \mathcal{I} depends on the theory, determined by

CHY formulation

Tree amps $=$ contour integral in $\mathcal{M}_{n, 0}=$ sum over solutions

$$
M_{n}=\int \underbrace{\frac{d^{n} \sigma}{\operatorname{vol~SL}(2, \mathbb{C})} \prod_{a}^{\prime} \delta\left(E_{a}\right)}_{d \mu_{n}} \mathcal{I}(\{k, \epsilon, \sigma\})=\sum_{\{\sigma\} \in \text { solns. }} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}
$$

- $d \mu_{n}$ contains $n-3$ integrals and $n-3$ delta functions
- J is the Jacobian from solving the equations: $J \sim\left|\frac{\partial E_{a}}{\partial \sigma_{b}}\right|$
"CHY integrand" \mathcal{I} depends on the theory, determined by
- basic consistency: mass dimension, statistics,...

CHY formulation

Tree amps $=$ contour integral in $\mathcal{M}_{n, 0}=$ sum over solutions

$$
M_{n}=\int \underbrace{\frac{d^{n} \sigma}{\operatorname{vol~SL}(2, \mathbb{C})} \prod_{a}^{\prime} \delta\left(E_{a}\right)}_{d \mu_{n}} \mathcal{I}(\{k, \epsilon, \sigma\})=\sum_{\{\sigma\} \in \text { solns. }} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}
$$

- $d \mu_{n}$ contains $n-3$ integrals and $n-3$ delta functions
- J is the Jacobian from solving the equations: $J \sim\left|\frac{\partial E_{a}}{\partial \sigma_{b}}\right|$
"CHY integrand" \mathcal{I} depends on the theory, determined by
- basic consistency: mass dimension, statistics,...
- importantly, gauge invariance and symmetries

CHY formulation

Tree amps $=$ contour integral in $\mathcal{M}_{n, 0}=$ sum over solutions

$$
M_{n}=\int \underbrace{\frac{d^{n} \sigma}{\operatorname{vol} \mathrm{SL}(2, \mathbb{C})} \prod_{a}^{\prime} \delta\left(E_{a}\right)}_{d \mu_{n}} \mathcal{I}(\{k, \epsilon, \sigma\})=\sum_{\{\sigma\} \in \text { solns. }} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}
$$

- $d \mu_{n}$ contains $n-3$ integrals and $n-3$ delta functions
- J is the Jacobian from solving the equations: $J \sim\left|\frac{\partial E_{a}}{\partial \sigma_{b}}\right|$
"CHY integrand" \mathcal{I} depends on the theory, determined by
- basic consistency: mass dimension, statistics,...
- importantly, gauge invariance and symmetries
- "proof": factorization + soft limits [also see Goddard, Dolan '13]

PT as the simplest building block

PT as the simplest building block

$$
\operatorname{SL}(2, \mathbb{C}): \sigma_{a} \rightarrow \frac{\alpha \sigma_{a}+\beta}{\gamma \sigma_{a}+\delta}, \quad \mathcal{I} \xrightarrow{S L(2, \mathbb{C})} \mathcal{I} \prod_{a=1}^{n}\left(\gamma \sigma_{a}+\delta\right)^{4}
$$

PT as the simplest building block

$$
\mathrm{SL}(2, \mathbb{C}): \sigma_{a} \rightarrow \frac{\alpha \sigma_{a}+\beta}{\gamma \sigma_{a}+\delta}, \quad \mathcal{I} \xrightarrow{S L(2, \mathbb{C})} \mathcal{I} \prod_{a=1}^{n}\left(\gamma \sigma_{a}+\delta\right)^{4}
$$

$P T_{n} \rightarrow \prod_{a=1}^{n}\left(\gamma \sigma_{a}+\delta\right)^{2} P T_{n}$: correct weight as half-integrand

$$
\operatorname{PT}[\pi]:=\frac{1}{\left(\sigma_{\pi(1)}-\sigma_{\pi(2)}\right)\left(\sigma_{\pi(2)}-\sigma_{\pi(3)}\right) \cdots\left(\sigma_{\pi(n)}-\sigma_{\pi(1)}\right)}
$$

PT as the simplest building block

$$
\mathrm{SL}(2, \mathbb{C}): \sigma_{a} \rightarrow \frac{\alpha \sigma_{a}+\beta}{\gamma \sigma_{a}+\delta}, \quad \mathcal{I} \xrightarrow{S L(2, \mathbb{C})} \mathcal{I} \prod_{a=1}^{n}\left(\gamma \sigma_{a}+\delta\right)^{4}
$$

$P T_{n} \rightarrow \prod_{a=1}^{n}\left(\gamma \sigma_{a}+\delta\right)^{2} P T_{n}$: correct weight as half-integrand

$$
\operatorname{PT}[\pi]:=\frac{1}{\left(\sigma_{\pi(1)}-\sigma_{\pi(2)}\right)\left(\sigma_{\pi(2)}-\sigma_{\pi(3)}\right) \cdots\left(\sigma_{\pi(n)}-\sigma_{\pi(1)}\right)}
$$

The simplest integrand: two copies of $\operatorname{PT}(\mathrm{SL}(2, \mathbb{C})$ weight $)$

$$
m[\pi \mid \rho]:=\int \frac{d^{n} \sigma_{a}}{\text { vol. }} \prod_{a}^{\prime} \delta\left(\sum_{b \neq a} \frac{k_{a} \cdot k_{b}}{\sigma_{a}-\sigma_{b}}\right) \mathrm{PT}[\pi] \mathrm{PT}[\rho]
$$

PT as the simplest building block

$$
\operatorname{SL}(2, \mathbb{C}): \sigma_{a} \rightarrow \frac{\alpha \sigma_{a}+\beta}{\gamma \sigma_{a}+\delta}, \quad \mathcal{I} \xrightarrow{S L(2, \mathbb{C})} \mathcal{I} \prod_{a=1}^{n}\left(\gamma \sigma_{a}+\delta\right)^{4}
$$

$P T_{n} \rightarrow \prod_{a=1}^{n}\left(\gamma \sigma_{a}+\delta\right)^{2} P T_{n}$: correct weight as half-integrand

$$
\operatorname{PT}[\pi]:=\frac{1}{\left(\sigma_{\pi(1)}-\sigma_{\pi(2)}\right)\left(\sigma_{\pi(2)}-\sigma_{\pi(3)}\right) \cdots\left(\sigma_{\pi(n)}-\sigma_{\pi(1)}\right)}
$$

The simplest integrand: two copies of $\mathrm{PT}(\mathrm{SL}(2, \mathbb{C})$ weight)

$$
m[\pi \mid \rho]:=\int \frac{d^{n} \sigma_{a}}{\operatorname{vol} .} \prod_{a}^{\prime} \delta\left(\sum_{b \neq a} \frac{k_{a} \cdot k_{b}}{\sigma_{a}-\sigma_{b}}\right) \mathrm{PT}[\pi] \operatorname{PT}[\rho]
$$

What does the formula compute?

Trivalent diagrams from CHY

$m[\pi \mid \rho]$ computes the sum of trivalent scalar diagrams (massless propagators) that are consistent with both π, ρ orderings

$$
m[\pi \mid \rho]=\sum_{g \in T(\pi) \cap T(\rho)} \prod_{e \in E(g)} \frac{1}{P_{e}^{2}}
$$

Trivalent diagrams from CHY

$m[\pi \mid \rho]$ computes the sum of trivalent scalar diagrams (massless propagators) that are consistent with both π, ρ orderings

$$
m[\pi \mid \rho]=\sum_{g \in T(\pi) \cap T(\rho)} \prod_{e \in E(g)} \frac{1}{P_{e}^{2}}
$$

Sum of trivalent scalar diagrams \Leftrightarrow certain $m[\pi \mid \rho]$. Examples:

Trivalent diagrams from CHY

$m[\pi \mid \rho]$ computes the sum of trivalent scalar diagrams (massless propagators) that are consistent with both π, ρ orderings

$$
m[\pi \mid \rho]=\sum_{g \in T(\pi) \cap T(\rho)} \prod_{e \in E(g)} \frac{1}{P_{e}^{2}}
$$

Sum of trivalent scalar diagrams \Leftrightarrow certain $m[\pi \mid \rho]$. Examples:

$$
m[1234 \mid 1243]=\frac{1}{s_{12}}, m[1234 \mid 1324]=\frac{1}{s_{14}}, m[1234 \mid 1234]=\frac{1}{s_{12}}+\frac{1}{s_{14}}
$$

Trivalent diagrams from CHY

$m[\pi \mid \rho]$ computes the sum of trivalent scalar diagrams (massless propagators) that are consistent with both π, ρ orderings

$$
m[\pi \mid \rho]=\sum_{g \in T(\pi) \cap T(\rho)} \prod_{e \in E(g)} \frac{1}{P_{e}^{2}}
$$

Sum of trivalent scalar diagrams \Leftrightarrow certain $m[\pi \mid \rho]$. Examples:

$$
\begin{aligned}
& m[1234 \mid 1243]=\frac{1}{s_{12}}, m[1234 \mid 1324]=\frac{1}{s_{14}}, m[1234 \mid 1234]=\frac{1}{s_{12}}+\frac{1}{s_{14}} \\
& m[12345 \mid 12534]=\frac{1}{s_{12} s_{34}}, m[12345 \mid 12543]=\frac{1}{s_{12} s_{34}}+\frac{1}{s_{12} s_{45}}
\end{aligned}
$$

Trivalent diagrams from CHY

$m[\pi \mid \rho]$ computes the sum of trivalent scalar diagrams (massless propagators) that are consistent with both π, ρ orderings

$$
m[\pi \mid \rho]=\sum_{g \in T(\pi) \cap T(\rho)} \prod_{e \in E(g)} \frac{1}{P_{e}^{2}}
$$

Sum of trivalent scalar diagrams \Leftrightarrow certain $m[\pi \mid \rho]$. Examples:

$$
\begin{aligned}
& m[1234 \mid 1243]=\frac{1}{s_{12}}, m[1234 \mid 1324]=\frac{1}{s_{14}}, m[1234 \mid 1234]=\frac{1}{s_{12}}+\frac{1}{s_{14}} \\
& m[12345 \mid 12534]=\frac{1}{s_{12} s_{34}}, m[12345 \mid 12543]=\frac{1}{s_{12} s_{34}}+\frac{1}{s_{12} s_{45}}
\end{aligned}
$$

Simplest CHY formula: ϕ^{3} theory

Simplest CHY formula: ϕ^{3} theory

Theorem: there exists \mathcal{I} for any sensible massless tree amps

Simplest CHY formula: ϕ^{3} theory

Theorem: there exists \mathcal{I} for any sensible massless tree amps However, generally very complicated, no closed formula

Simplest CHY formula: ϕ^{3} theory

Theorem: there exists \mathcal{I} for any sensible massless tree amps However, generally very complicated, no closed formula ϕ^{3} theory with flavors, e.g. in bi-adjoint of $\mathrm{U}(N) \times \mathrm{U}\left(N^{\prime}\right)$: vertex $f^{I J K} f^{I^{\prime} J^{\prime} K^{\prime}} \phi_{I I^{\prime}} \phi_{J J^{\prime}} \phi_{K K^{\prime}} \Rightarrow$ trivalent graphs with f^{\prime} s

Simplest CHY formula: ϕ^{3} theory

Theorem: there exists \mathcal{I} for any sensible massless tree amps However, generally very complicated, no closed formula
ϕ^{3} theory with flavors, e.g. in bi-adjoint of $\mathrm{U}(N) \times \mathrm{U}\left(N^{\prime}\right)$: vertex $f^{I J K} f^{\prime \prime J^{\prime} K^{\prime}} \phi_{I I^{\prime}} \phi_{J J^{\prime}} \phi_{K K^{\prime}} \Rightarrow$ trivalent graphs with $\mathrm{f}^{\prime} \mathrm{s}$

Similar to gluons, define color-dressed PT for each group,

$$
\mathcal{C}=\sum_{\pi \in S_{n} / Z_{n}} \operatorname{Tr}\left(T^{I_{\pi(1)}} \cdots T^{\left.I_{\pi(n)}\right)} \mathrm{PT}[\pi]\right.
$$

Simplest CHY formula: ϕ^{3} theory

Theorem: there exists \mathcal{I} for any sensible massless tree amps However, generally very complicated, no closed formula
ϕ^{3} theory with flavors, e.g. in bi-adjoint of $\mathrm{U}(N) \times \mathrm{U}\left(N^{\prime}\right)$: vertex $f^{I J K} f^{\prime \prime J^{\prime} K^{\prime}} \phi_{I I^{\prime}} \phi_{J J^{\prime}} \phi_{K K^{\prime}} \Rightarrow$ trivalent graphs with $\mathrm{f}^{\prime} \mathrm{s}$

Similar to gluons, define color-dressed PT for each group,

$$
\mathcal{C}=\sum_{\pi \in S_{n} / Z_{n}} \operatorname{Tr}\left(T^{I_{\pi(1)}} \cdots T^{\left.I_{\pi(n)}\right)} \mathrm{PT}[\pi]\right.
$$

CHY formula for bi-adjoint ϕ^{3} amplitudes: gives sum of all $m[\pi \mid \rho]^{\prime} \mathrm{s}$ with flavor factors (note permutation invariance)

$$
M_{n}^{\phi^{3}}=\int d \mu_{n} \mathcal{C} \mathcal{C}^{\prime}=\sum_{\pi, \rho} \operatorname{Tr}\left(T^{I_{\pi(1)}} \ldots T^{I_{\pi(n)}}\right) \operatorname{Tr}\left(T^{I_{\rho(1)}} \ldots T^{I_{\rho(n)}}\right) m[\pi \mid \rho]
$$

Yang-Mills: another building block

Yang-Mills: another building block

Need a building block to encode gluon polarizations:

Yang-Mills: another building block

Need a building block to encode gluon polarizations:

- Carry half of $S L(2, \mathbb{C})$ weight, mass dimension $[M]^{n-2}$

Yang-Mills: another building block

Need a building block to encode gluon polarizations:

- Carry half of $S L(2, \mathbb{C})$ weight, mass dimension $[M]^{n-2}$
- permutation invariant, multi-linear in $\left\{\epsilon_{a}\right\}$

Yang-Mills: another building block

Need a building block to encode gluon polarizations:

- Carry half of $S L(2, \mathbb{C})$ weight, mass dimension $[M]^{n-2}$
- permutation invariant, multi-linear in $\left\{\epsilon_{a}\right\}$
- most important: gauge invariance!

Yang-Mills: another building block

Need a building block to encode gluon polarizations:

- Carry half of $S L(2, \mathbb{C})$ weight, mass dimension $[M]^{n-2}$
- permutation invariant, multi-linear in $\left\{\epsilon_{a}\right\}$
- most important: gauge invariance!

Introduce $2 n \times 2 n$ skew matrix Ψ, with four $n \times n$ blocks

$$
\Psi:=\left(\begin{array}{cc}
A & -C^{T} \\
C & B
\end{array}\right)
$$

Yang-Mills: another building block

Need a building block to encode gluon polarizations:

- Carry half of $S L(2, \mathbb{C})$ weight, mass dimension $[M]^{n-2}$
- permutation invariant, multi-linear in $\left\{\epsilon_{a}\right\}$
- most important: gauge invariance!

Introduce $2 n \times 2 n$ skew matrix Ψ, with four $n \times n$ blocks

$$
\begin{gathered}
\Psi:=\left(\begin{array}{cc}
A & -C^{T} \\
C & B
\end{array}\right), \\
A_{a, b}:=\left\{\begin{array}{ll}
\frac{k_{a} \cdot k_{b}}{\sigma_{a, b}} & a \neq b \\
0 & a=b,
\end{array} \quad B_{a, b}:= \begin{cases}\frac{\epsilon_{a} \cdot \epsilon_{b}}{\sigma_{a, b}} & a \neq b \\
0 & a=b\end{cases} \right. \\
C_{a, b}:= \begin{cases}\frac{\epsilon_{a} \cdot k_{b}}{\sigma_{a, b}} & a \neq b \\
-\sum_{c \neq a} C_{a, c} & a=b\end{cases}
\end{gathered}
$$

CHY formula for Yang-Mills

The building block should be pfaffian of Ψ (multilinear in $\epsilon^{\prime} s$)

CHY formula for Yang-Mills

The building block should be pfaffian of Ψ (multilinear in $\epsilon^{\prime} s$)
a subtlety: Ψ is degenerate \Rightarrow reduced pfaffian: $\operatorname{Pf}^{\prime} \Psi:=\frac{\operatorname{Pf}|\Psi|_{i, j}^{i, j}}{\sigma_{i, j}}$

CHY formula for Yang-Mills

The building block should be pfaffian of Ψ (multilinear in $\epsilon^{\prime} s$)
a subtlety: Ψ is degenerate \Rightarrow reduced pfaffian: $\operatorname{Pf}^{\prime} \Psi:=\frac{\operatorname{Pf}|\Psi|_{i, j}^{i, j}}{\sigma_{i, j}}$
The other copy is the Parke-Taylor factor, or \mathcal{C} for colors:

$$
M_{n}^{\mathrm{YM}}[\pi]=\int d \mu_{n} \mathrm{PT}[\pi] \mathrm{Pf}^{\prime} \Psi \Rightarrow \mathcal{M}_{n}^{\mathrm{YM}}=\int d \mu_{n} \mathcal{C} \mathrm{Pf}^{\prime} \Psi
$$

CHY formula for Yang-Mills

The building block should be pfaffian of Ψ (multilinear in $\epsilon^{\prime} s$)
a subtlety: Ψ is degenerate \Rightarrow reduced pfaffian: $\operatorname{Pf}^{\prime} \Psi:=\frac{\operatorname{Pf}|\Psi|_{i, j}^{i, j}}{\sigma_{i, j}}$
The other copy is the Parke-Taylor factor, or \mathcal{C} for colors:

$$
M_{n}^{\mathrm{YM}}[\pi]=\int d \mu_{n} \mathrm{PT}[\pi] \mathrm{Pf}^{\prime} \Psi \Rightarrow \mathcal{M}_{n}^{\mathrm{YM}}=\int d \mu_{n} \mathcal{C} \mathrm{Pf}^{\prime} \Psi
$$

Complete S-matrix for any number of gluons in any dimension

CHY formula for Yang-Mills

The building block should be pfaffian of Ψ (multilinear in $\epsilon^{\prime} s$)
a subtlety: Ψ is degenerate \Rightarrow reduced pfaffian: $\operatorname{Pf}^{\prime} \Psi:=\frac{\operatorname{Pf}|\Psi|_{i, j}^{i, j}}{\sigma_{i, j}}$
The other copy is the Parke-Taylor factor, or \mathcal{C} for colors:

$$
M_{n}^{\mathrm{YM}}[\pi]=\int d \mu_{n} \mathrm{PT}[\pi] \mathrm{Pf}^{\prime} \Psi \Rightarrow \mathcal{M}_{n}^{\mathrm{YM}}=\int d \mu_{n} \mathcal{C} \mathrm{Pf}^{\prime} \Psi
$$

Complete S-matrix for any number of gluons in any dimension

The origin of $\mathrm{Pf}^{\prime} \Psi$: by scattering equations, it is exactly given by open-string correlators in the field-theory limit

$$
\operatorname{Pf}^{\prime} \Psi \sim\left\langle V^{(0)}\left(\sigma_{1}\right) \ldots V^{(-1)}\left(\sigma_{i}\right) \ldots V^{(-1)}\left(\sigma_{j}\right) \ldots V^{(0)}\left(\sigma_{n}\right)\right\rangle
$$

Gauge invariance

Gauge invariance of gluons: $\epsilon_{a}^{\mu} \sim \epsilon_{a}^{\mu}+\alpha k_{a}^{\mu}$

Gauge invariance

Gauge invariance of gluons: $\epsilon_{a}^{\mu} \sim \epsilon_{a}^{\mu}+\alpha k_{a}^{\mu}$

Gauge invariance

Gauge invariance of gluons: $\epsilon_{a}^{\mu} \sim \epsilon_{a}^{\mu}+\alpha k_{a}^{\mu}$

$$
\left(\begin{array}{cc|cc}
0 & \cdots & \sum_{b=2}^{n} \frac{k_{1} \cdot k_{b}}{\sigma_{1, b}} & \cdots \\
\frac{k_{2} \cdot k_{1}}{\sigma_{2,1}} & \cdots & \frac{k_{2} \cdot k_{1}}{\sigma_{2,1}} & \cdots \\
\vdots & & \vdots & \\
\frac{k_{n} \cdot k_{1}}{\sigma_{2,1}} & \cdots & \frac{k_{n} \cdot k_{1}}{\sigma_{2,1}} & \cdots \\
-\sum \frac{n}{b=2} \frac{k_{1} \cdot k_{b}}{\sigma_{1, b}} & \cdots & 0 & \cdots \\
\frac{\epsilon_{2} \cdot k_{1}}{\sigma_{2,1}} & \cdots & \frac{\epsilon_{2} \cdot k_{1}}{\sigma_{2,1}} & \cdots \\
\vdots & & \vdots & \\
\frac{\epsilon_{n} \cdot k_{1}}{\sigma_{2,1}} & \cdots & \frac{\epsilon_{n} \cdot k_{1}}{\sigma_{2,1}} & \cdots
\end{array}\right)
$$

Substituting $\epsilon_{1} \rightarrow k_{1} \mathrm{Pf}^{\prime} \Psi=0$ for each solution of scattering equations \Longrightarrow gauge invariance manifest from CHY formula!

CHY formula for gravity

$\mathcal{C} \times \mathcal{C}^{\prime} \Rightarrow$ bi-adjoint scalars, $\quad \mathcal{C} \times \mathrm{Pf}^{\prime} \Psi \Rightarrow$ Yang-Mills

CHY formula for gravity

$\mathcal{C} \times \mathcal{C}^{\prime} \Rightarrow$ bi-adjoint scalars, $\quad \mathcal{C} \times \mathrm{Pf}^{\prime} \Psi \Rightarrow$ Yang-Mills
How about gravity? no color, polarization tensor $h^{\mu \nu}=\epsilon^{\mu} \epsilon^{\nu}$

CHY formula for gravity

$\mathcal{C} \times \mathcal{C}^{\prime} \Rightarrow$ bi-adjoint scalars, $\quad \mathcal{C} \times \mathrm{Pf}^{\prime} \Psi \Rightarrow$ Yang-Mills
How about gravity? no color, polarization tensor $h^{\mu \nu}=\epsilon^{\mu} \epsilon^{\nu}$
In general $\epsilon^{\mu} \epsilon^{\prime \nu}$ gives $h^{\mu \nu}+B^{\mu \nu}+\phi$; CHY formula for gravity
$M_{n}^{h+B+\phi}=\int d \mu_{n} \operatorname{Pf}^{\prime} \Psi(\epsilon) \operatorname{Pf}^{\prime} \Psi\left(\epsilon^{\prime}\right) \longrightarrow M_{n}^{G R}=\int d \mu_{n} \operatorname{det}^{\prime} \Psi(\epsilon)$

CHY formula for gravity

$\mathcal{C} \times \mathcal{C}^{\prime} \Rightarrow$ bi-adjoint scalars, $\quad \mathcal{C} \times \mathrm{Pf}^{\prime} \Psi \Rightarrow$ Yang-Mills
How about gravity? no color, polarization tensor $h^{\mu \nu}=\epsilon^{\mu} \epsilon^{\nu}$
In general $\epsilon^{\mu} \epsilon^{\prime \nu}$ gives $h^{\mu \nu}+B^{\mu \nu}+\phi$; CHY formula for gravity

$$
M_{n}^{h+B+\phi}=\int d \mu_{n} \operatorname{Pf}^{\prime} \Psi(\epsilon) \operatorname{Pf}^{\prime} \Psi\left(\epsilon^{\prime}\right) \longrightarrow M_{n}^{G R}=\int d \mu_{n} \operatorname{det}^{\prime} \Psi(\epsilon)
$$

Compete S-matrix of gravitons \Rightarrow hidden simplicity of GR

CHY formula for gravity

$\mathcal{C} \times \mathcal{C}^{\prime} \Rightarrow$ bi-adjoint scalars, $\quad \mathcal{C} \times \mathrm{Pf}^{\prime} \Psi \Rightarrow$ Yang-Mills
How about gravity? no color, polarization tensor $h^{\mu \nu}=\epsilon^{\mu} \epsilon^{\nu}$
In general $\epsilon^{\mu} \epsilon^{\prime \nu}$ gives $h^{\mu \nu}+B^{\mu \nu}+\phi$; CHY formula for gravity

$$
M_{n}^{h+B+\phi}=\int d \mu_{n} \operatorname{Pf}^{\prime} \Psi(\epsilon) \operatorname{Pf}^{\prime} \Psi\left(\epsilon^{\prime}\right) \longrightarrow M_{n}^{G R}=\int d \mu_{n} \operatorname{det}^{\prime} \Psi(\epsilon)
$$

Compete S-matrix of gravitons \Rightarrow hidden simplicity of GR
Unified formula for massless theories with spin $s=0,1,2$

$$
\mathcal{I}^{\text {spin } s}=\mathcal{C}^{2-s} \times\left(\mathrm{Pf}^{\prime} \Psi\right)^{s}
$$

CHY formula for gravity

$\mathcal{C} \times \mathcal{C}^{\prime} \Rightarrow$ bi-adjoint scalars, $\quad \mathcal{C} \times \mathrm{Pf}^{\prime} \Psi \Rightarrow$ Yang-Mills
How about gravity? no color, polarization tensor $h^{\mu \nu}=\epsilon^{\mu} \epsilon^{\nu}$
In general $\epsilon^{\mu} \epsilon^{\prime \nu}$ gives $h^{\mu \nu}+B^{\mu \nu}+\phi$; CHY formula for gravity

$$
M_{n}^{h+B+\phi}=\int d \mu_{n} \operatorname{Pf}^{\prime} \Psi(\epsilon) \operatorname{Pf}^{\prime} \Psi\left(\epsilon^{\prime}\right) \longrightarrow M_{n}^{G R}=\int d \mu_{n} \operatorname{det}^{\prime} \Psi(\epsilon)
$$

Compete S-matrix of gravitons \Rightarrow hidden simplicity of GR
Unified formula for massless theories with spin $s=0,1,2$

$$
\mathcal{I}^{\text {spin } s}=\mathcal{C}^{2-s} \times\left(\mathrm{Pf}^{\prime} \Psi\right)^{s}
$$

The third way of seeing " $\mathrm{GR}=\mathrm{YM}^{2} / \phi^{3 "}$ " after [KLT' $\left.\left.86, \mathrm{BCJ}\right]^{\prime} 08\right]$.

Diffeomorphism invariance

Again manifest in CHY formulation: $\operatorname{det}^{\prime} \Psi=0$ as $\epsilon_{a} \rightarrow k_{a}$

Diffeomorphism invariance

Again manifest in CHY formulation: $\operatorname{det}^{\prime} \Psi=0$ as $\epsilon_{a} \rightarrow k_{a}$

$$
\left(\begin{array}{cc|cc}
0 & \cdots & \sum_{b=2}^{n} \frac{k_{1} \cdot k_{b}}{\sigma_{1, b}} & \cdots \\
\frac{k_{2} \cdot k_{1}}{\sigma_{2,1}} & \cdots & \frac{k_{2} \cdot{ }_{1}}{\sigma_{2,1}} & \cdots \\
\vdots & & \vdots & \\
\frac{k_{n} \cdot k_{1}}{\sigma_{2,1}} & \cdots & \frac{k_{n} \cdot k_{1}}{\sigma_{2,1}} & \cdots \\
-\sum_{b=2}^{n} 2 \frac{k_{1} \cdot k_{b}}{\sigma_{1, b}} & \cdots & 0 & \cdots \\
\frac{\epsilon_{2} \cdot k_{1}}{\sigma_{2,1}} & \cdots & \frac{\epsilon_{2} \cdot k_{1}}{\sigma_{2,1}} & \cdots \\
\vdots & & \vdots & \\
\frac{\epsilon_{n} \cdot k_{1}}{\sigma_{2,1}} & \cdots & \frac{\epsilon_{n} \cdot k_{1}}{\sigma_{2,1}} & \cdots
\end{array}\right)
$$

Diffeomorphism invariance

Again manifest in CHY formulation: $\operatorname{det}^{\prime} \Psi=0$ as $\epsilon_{a} \rightarrow k_{a}$
$\mathrm{Pf}^{\prime} \Psi(\epsilon) \times \mathrm{Pf}^{\prime} \Psi\left(\epsilon^{\prime}\right)$ correspond to closed-string correlator by using scattering equations: closed-string $=$ open-string ${ }^{2}$

"Virtual amplitudes"

"Virtual amplitudes"

Amplitude as a sum of ($n-3$)! "virtual amplitudes":

$$
M_{n}=\sum_{I=1}^{(n-3)!} \frac{\mathcal{I}_{n}^{(I)}(\{k, \epsilon\})}{\left.J_{n}^{(I)}\left(\left\{s_{a}\right\}\right\}\right)}:=\sum_{l=1}^{(n-3)!} V_{n}^{(I)}(\{k, \epsilon\})
$$

"Virtual amplitudes"

Amplitude as a sum of ($n-3$)! "virtual amplitudes":

$$
M_{n}=\sum_{I=1}^{(n-3)!} \frac{\mathcal{I}_{n}^{(I)}(\{k, \epsilon\})}{J_{n}^{(I)}\left(\left\{s_{a b}\right\}\right)}:=\sum_{l=1}^{(n-3)!} V_{n}^{(I)}(\{k, \epsilon\})
$$

$V_{n}^{(I)}$ has (almost) all properties of the amplitude: color, gauge/diff invariance, factorization, and " $\mathrm{GR}=\mathrm{YM}^{2} / \phi^{3 "}$.

"Virtual amplitudes"

Amplitude as a sum of ($n-3$)! "virtual amplitudes":

$$
M_{n}=\sum_{l=1}^{(n-3)!} \frac{\mathcal{I}_{n}^{(I)}(\{k, \epsilon\})}{J_{n}^{(I)}\left(\left\{s_{a b}\right\}\right)}:=\sum_{l=1}^{(n-3)!} V_{n}^{(I)}(\{k, \epsilon\})
$$

$V_{n}^{(I)}$ has (almost) all properties of the amplitude: color, gauge/diff invariance, factorization, and " $\mathrm{GR}=\mathrm{YM}^{2} / \phi^{3 "}$.

But they are highly non-local In 4d, solutions fall into sectors $d=1, \ldots, n-3 \rightarrow$ local, helicity amps in GR and YM.

"Virtual amplitudes"

Amplitude as a sum of ($n-3$)! "virtual amplitudes":

$$
M_{n}=\sum_{l=1}^{(n-3)!} \frac{\mathcal{I}_{n}^{(l)}(\{k, \epsilon\})}{J_{n}^{(I)}\left(\left\{s_{a} b\right\}\right)}:=\sum_{l=1}^{(n-3)!} V_{n}^{(l)}(\{k, \epsilon\})
$$

$V_{n}^{(I)}$ has (almost) all properties of the amplitude: color, gauge/diff invariance, factorization, and " $\mathrm{GR}=\mathrm{YM}^{2} / \phi^{3}$ ".

But they are highly non-local In 4d, solutions fall into sectors $d=1, \ldots, n-3 \rightarrow$ local, helicity amps in GR and YM.

Alternatively, $\operatorname{Pf}^{\prime} \Psi=\sum_{\alpha} N_{\alpha} P T[\alpha] \rightarrow$ local, trivalent-graph expansion with BCJ numerators (but gauge variant).

More theories in CHY

More theories in CHY

We can generate new formulas from old ones, e.g. compactify $R^{d+m} \rightarrow R^{d}$ with $K=\left(k^{(d)} \mid 0\right), \mathcal{E}=\left(\epsilon^{(d)} \mid 0\right)$ or $\left(0 \mid e^{(m)}\right)$:

More theories in CHY

We can generate new formulas from old ones, e.g. compactify $R^{d+m} \rightarrow R^{d}$ with $K=\left(k^{(d)} \mid 0\right), \mathcal{E}=\left(\epsilon^{(d)} \mid 0\right)$ or $\left(0 \mid e^{(m)}\right)$:

YM \rightarrow Yang-Mills-scalar or GR \rightarrow Einstein-Maxwell,

$$
\operatorname{Pf}^{\prime} \Psi(K, \mathcal{E}) \rightarrow \operatorname{Pf}^{\prime}[\Psi]\left(k, \epsilon_{g}\right) \operatorname{Pf}[X]_{s}, \quad X_{a b}:=\frac{\delta^{l_{a} I_{b}}}{\sigma_{a}-\sigma_{b}}\left(1-\delta_{a b}\right),
$$

More theories in CHY

We can generate new formulas from old ones, e.g. compactify $R^{d+m} \rightarrow R^{d}$ with $K=\left(k^{(d)} \mid 0\right), \mathcal{E}=\left(\epsilon^{(d)} \mid 0\right)$ or $\left(0 \mid e^{(m)}\right)$:

YM \rightarrow Yang-Mills-scalar or GR \rightarrow Einstein-Maxwell,

$$
\operatorname{Pf}^{\prime} \Psi(K, \mathcal{E}) \rightarrow \operatorname{Pf}^{\prime}[\Psi]\left(k, \epsilon_{g}\right) \operatorname{Pf}[X]_{s}, \quad X_{a b}:=\frac{\delta^{l_{a}} I_{b}}{\sigma_{a}-\sigma_{b}}\left(1-\delta_{a b}\right),
$$

Pure-photon (scalar) amps in EM (YMs) particularly simple:

$$
M_{\gamma^{n}}^{\mathrm{EM}}=\int d \mu_{n} \operatorname{Pf}^{\prime} A \operatorname{Pf} X \operatorname{Pf}^{\prime} \Psi(\tilde{\epsilon}), \quad M_{s^{n}}^{\mathrm{YMs}}=\int d \mu_{n} \operatorname{Pf}^{\prime} A \operatorname{Pf} X \mathcal{C} .
$$

More theories in CHY

We can generate new formulas from old ones, e.g. compactify $R^{d+m} \rightarrow R^{d}$ with $K=\left(k^{(d)} \mid 0\right), \mathcal{E}=\left(\epsilon^{(d)} \mid 0\right)$ or $\left(0 \mid e^{(m)}\right)$:

YM \rightarrow Yang-Mills-scalar or GR \rightarrow Einstein-Maxwell,

$$
\operatorname{Pf}^{\prime} \Psi(K, \mathcal{E}) \rightarrow \operatorname{Pf}^{\prime}[\Psi]\left(k, \epsilon_{g}\right) \operatorname{Pf}[X]_{s}, \quad X_{a b}:=\frac{\delta^{l_{a} I_{b}}}{\sigma_{a}-\sigma_{b}}\left(1-\delta_{a b}\right),
$$

Pure-photon (scalar) amps in EM (YMs) particularly simple:
$M_{\gamma^{n}}^{\mathrm{EM}}=\int d \mu_{n} \operatorname{Pf}^{\prime} A \operatorname{Pf} X \operatorname{Pf}^{\prime} \Psi(\tilde{\epsilon}), \quad M_{s^{n}}^{\mathrm{YMs}}=\int d \mu_{n} \operatorname{Pf}^{\prime} A \operatorname{Pf} X \mathcal{C}$.

A corollary of the latter is a intriguing formula for ϕ^{4} theory.

More theories in CHY

More theories in CHY

New formulas from $\mathrm{Pf}^{\prime} A \rightarrow$ EFT's with massless scalars

More theories in CHY

New formulas from $\mathrm{Pf}^{\prime} A \rightarrow$ EFT's with massless scalars
$\int d \mu_{n}\left(\operatorname{Pf}^{\prime} A\right)^{2} \mathcal{C} ? \mathrm{U}(\mathrm{N})$-flavored scalars with two derivatives?

More theories in CHY

New formulas from $\mathrm{Pf}^{\prime} A \rightarrow$ EFT's with massless scalars
$\int d \mu_{n}\left(\operatorname{Pf}^{\prime} A\right)^{2} \mathcal{C} ? \mathrm{U}(\mathrm{N})$-flavored scalars with two derivatives?
The chiral Lagrangian (NLSM), $\mathcal{L}=\operatorname{Tr}\left(\partial_{\mu} U^{+} \partial^{\mu} U\right)!$

More theories in CHY

New formulas from $\mathrm{Pf}^{\prime} A \rightarrow$ EFT's with massless scalars
$\int d \mu_{n}\left(\operatorname{Pf}^{\prime} A\right)^{2} \mathcal{C} ? \mathrm{U}(\mathrm{N})$-flavored scalars with two derivatives?
The chiral Lagrangian (NLSM), $\mathcal{L}=\operatorname{Tr}\left(\partial_{\mu} U^{+} \partial^{\mu} U\right)!$
$\int d \mu_{n}\left(\operatorname{Pf}^{\prime} A\right)^{2} \operatorname{Pf}^{\prime} \Psi(\tilde{\epsilon})$? photons with higher derivatives

More theories in CHY

New formulas from $\mathrm{Pf}^{\prime} A \rightarrow$ EFT's with massless scalars
$\int d \mu_{n}\left(\operatorname{Pf}^{\prime} A\right)^{2} \mathcal{C} ? \mathrm{U}(\mathrm{N})$-flavored scalars with two derivatives?
The chiral Lagrangian (NLSM), $\mathcal{L}=\operatorname{Tr}\left(\partial_{\mu} U^{+} \partial^{\mu} U\right)!$
$\int d \mu_{n}\left(\operatorname{Pf}^{\prime} A\right)^{2} \operatorname{Pf}^{\prime} \Psi(\tilde{\epsilon})$? photons with higher derivatives
Born-Infeld theory, $\mathcal{L}=\sqrt{-\operatorname{det}\left(\eta_{\mu \nu}+F_{\mu \nu}\right)}$!

More theories in CHY

New formulas from $\mathrm{Pf}^{\prime} A \rightarrow$ EFT's with massless scalars
$\int d \mu_{n}\left(\operatorname{Pf}^{\prime} A\right)^{2} \mathcal{C} ? \mathrm{U}(\mathrm{N})$-flavored scalars with two derivatives?
The chiral Lagrangian (NLSM), $\mathcal{L}=\operatorname{Tr}\left(\partial_{\mu} U^{+} \partial^{\mu} U\right)!$
$\int d \mu_{n}\left(\operatorname{Pf}^{\prime} A\right)^{2} \operatorname{Pf}^{\prime} \Psi(\tilde{\epsilon})$? photons with higher derivatives
Born-Infeld theory, $\mathcal{L}=\sqrt{-\operatorname{det}\left(\eta_{\mu \nu}+F_{\mu \nu}\right)}$!
Compactify \rightarrow DBI: e.g. $M_{n}^{\text {scalar-DBI }}=\int d \mu_{n}\left(\mathrm{Pf}^{\prime} A\right)^{3} \operatorname{Pf} X$.

More theories in CHY

New formulas from $\mathrm{Pf}^{\prime} A \rightarrow$ EFT's with massless scalars
$\int d \mu_{n}\left(\operatorname{Pf}^{\prime} A\right)^{2} \mathcal{C} ? \mathrm{U}(\mathrm{N})$-flavored scalars with two derivatives?
The chiral Lagrangian (NLSM), $\mathcal{L}=\operatorname{Tr}\left(\partial_{\mu} U^{+} \partial^{\mu} U\right)!$
$\int d \mu_{n}\left(\operatorname{Pf}^{\prime} A\right)^{2} \operatorname{Pf}^{\prime} \Psi(\tilde{\epsilon})$? photons with higher derivatives
Born-Infeld theory, $\mathcal{L}=\sqrt{-\operatorname{det}\left(\eta_{\mu \nu}+F_{\mu \nu}\right)}$!
Compactify \rightarrow DBI: e.g. $M_{n}^{\text {scalar-DBI }}=\int d \mu_{n}\left(\mathrm{Pf}^{\prime} A\right)^{3} \operatorname{Pf} X$.
The strangest is a special Galileon theory (a scalar theory with many derivatives) [Cheung et al ' $14, \ldots], M_{n}^{\text {sGal }}=\int d \mu_{n}\left(\mathrm{Pf}^{\prime} A\right)^{4}$.

More theories in CHY

More theories in CHY

Immediately: $\mathrm{U}(1) \& B C J$ relations for NLSM, and more:
"EMs $\sim \mathrm{YMs}^{2} " \quad$ "DBI $\sim \mathrm{NLSM} \times \mathrm{YMs} " \quad$ "sGal $\sim \mathrm{NLSM}^{2 "}$

More theories in CHY

Immediately: $\mathrm{U}(1) \& B C J$ relations for NLSM, and more:
"EMs $\sim \mathrm{YMs}^{2} " \quad$ "DBI $\sim \mathrm{NLSM} \times \mathrm{YMs} " \quad$ "sGal $\sim \mathrm{NLSM}^{2} "$
What is special about these EFT's: Goldstone bosons with (enhanced) "Adler's zero"! [Cheung et al '14; CHY '14]

More theories in CHY

Immediately: $\mathrm{U}(1) \& B C J$ relations for NLSM, and more:
"EMs $\sim \mathrm{YMs}^{2} " \quad$ "DBI $\sim \mathrm{NLSM} \times \mathrm{YMs} " \quad$ "sGal $\sim \mathrm{NLSM}^{2} "$
What is special about these EFT's: Goldstone bosons with (enhanced) "Adler's zero"! [Cheung et al '14; CHY '14]

For NLSM, scalar DBI, sGal $M_{n} \sim\left(\operatorname{Pf}^{\prime} A\right)^{2},\left(\mathrm{Pf}^{\prime} A\right)^{3},\left(\mathrm{Pf}^{\prime} A\right)^{4}$, with soft emission $p^{\mu} \sim \tau \rightarrow 0, M_{n} \sim \tau^{1}, \tau^{2}, \tau^{3} \rightarrow 0$.

More theories in CHY

Immediately: $\mathrm{U}(1) \& B C J$ relations for NLSM, and more:
"EMs $\sim \mathrm{YMs}^{2} " \quad$ "DBI $\sim \mathrm{NLSM} \times \mathrm{YMs}^{\prime \prime} \quad$ "sGal $\sim \mathrm{NLSM}^{2 "}$
What is special about these EFT's: Goldstone bosons with (enhanced) "Adler's zero"! [Cheung et al '14; CHY '14]

For NLSM, scalar DBI, sGal $M_{n} \sim\left(\operatorname{Pf}^{\prime} A\right)^{2},\left(\operatorname{Pf}^{\prime} A\right)^{3},\left(\operatorname{Pf}^{\prime} A\right)^{4}$, with soft emission $p^{\mu} \sim \tau \rightarrow 0, M_{n} \sim \tau^{1}, \tau^{2}, \tau^{3} \rightarrow 0$.

CHY makes double-soft emission theorems manifest: reveal the coset structure. [CHY '15; Arkani-Hamed et al. '08; ...]

More theories in CHY

Immediately: $\mathrm{U}(1) \& B C J$ relations for NLSM, and more:
"EMs $\sim \mathrm{YMs}^{2} " \quad$ "DBI $\sim \mathrm{NLSM} \times \mathrm{YMs}^{\prime \prime} \quad$ "sGal $\sim \mathrm{NLSM}^{2} "$
What is special about these EFT's: Goldstone bosons with (enhanced) "Adler's zero"! [Cheung et al '14; CHY '14]

For NLSM, scalar DBI, sGal $M_{n} \sim\left(\operatorname{Pf}^{\prime} A\right)^{2},\left(\operatorname{Pf}^{\prime} A\right)^{3},\left(\operatorname{Pf}^{\prime} A\right)^{4}$, with soft emission $p^{\mu} \sim \tau \rightarrow 0, M_{n} \sim \tau^{1}, \tau^{2}, \tau^{3} \rightarrow 0$.

CHY makes double-soft emission theorems manifest: reveal the coset structure. [CHY '15; Arkani-Hamed et al. '08; ...]

Hidden simplicity of these special EFT's (∞ vertices): enhanced soft behavior play the role of gauge/diff invariance.

More theories in CHY

More theories in CHY

Another operation: introducing non-abelian interactions
EM \rightarrow Einstein-Yang-Mills, YMs \rightarrow YMs $+\phi^{3}$

More theories in CHY

Another operation: introducing non-abelian interactions
EM \rightarrow Einstein-Yang-Mills, YMs \rightarrow YMs $+\phi^{3}$
"Parks-Taylor-like" factors are ubiquitous: one factor for each trace of gluons e.g. single-trace and (pure-gluon) double-trace

$$
\begin{gathered}
M_{n}^{(1, \ldots, m)}(g ; h)=\int d \mu_{n} \operatorname{PT}(1, \ldots, m) \operatorname{Pf}[\Psi]_{h} \operatorname{Pf}^{\prime} \Psi(\tilde{\epsilon}), \\
M_{n}^{(1, \ldots, r)(r+1, \ldots, n)}=\int d \mu_{n} s_{1, \ldots, r} \operatorname{PT}(1, \ldots, r) \operatorname{PT}(r+1, \ldots, n) \operatorname{Pf}^{\prime} \Psi_{n}(\tilde{\epsilon}) .
\end{gathered}
$$

More theories in CHY

Another operation: introducing non-abelian interactions
EM \rightarrow Einstein-Yang-Mills, YMs \rightarrow YMs $+\phi^{3}$
"Parks-Taylor-like" factors are ubiquitous: one factor for each trace of gluons e.g. single-trace and (pure-gluon) double-trace

$$
\begin{gathered}
M_{n}^{(1, \ldots, m)}(g ; h)=\int d \mu_{n} P T(1, \ldots, m) \operatorname{Pf}[\Psi]_{h} \operatorname{Pf}^{\prime} \Psi(\tilde{\epsilon}), \\
M_{n}^{(1, \ldots, r)(r+1, \ldots, n)}=\int d \mu_{n} s_{1, \ldots, r} \operatorname{PT}(1, \ldots, r) P T(r+1, \ldots, n) \operatorname{Pf}^{\prime} \Psi_{n}(\tilde{\epsilon}) .
\end{gathered}
$$

Repeating the operation: compact formula for all multi-trace gluon-graviton amps in EYM (or YMs $+\phi^{3}$).

More theories in CHY

Another operation: introducing non-abelian interactions
EM \rightarrow Einstein-Yang-Mills, YMs \rightarrow YMs $+\phi^{3}$
"Parks-Taylor-like" factors are ubiquitous: one factor for each trace of gluons e.g. single-trace and (pure-gluon) double-trace

$$
\begin{gathered}
M_{n}^{(1, \ldots, m)}(g ; h)=\int d \mu_{n} P T(1, \ldots, m) \operatorname{Pf}[\Psi]_{h} \operatorname{Pf}^{\prime} \Psi(\tilde{\epsilon}), \\
M_{n}^{(1, \ldots, r)(r+1, \ldots, n)}=\int d \mu_{n} s_{1}, \ldots, r \operatorname{PT}(1, \ldots, r) P T(r+1, \ldots, n) \operatorname{Pf}^{\prime} \Psi_{n}(\tilde{\epsilon}) .
\end{gathered}
$$

Repeating the operation: compact formula for all multi-trace gluon-graviton amps in EYM (or YMs $+\phi^{3}$).

New ambitwistor-string models [Geyer et al '15]. String origin?

A landscape of massless theories

KLT in CHY

KLT in CHY

Kawai-Lewellen-Tye relations: closed-string $\sim \sum$ open-string ${ }^{2}$

KLT in CHY

Kawai-Lewellen-Tye relations: closed-string $\sim \sum$ open-string ${ }^{2}$ $\alpha^{\prime} \rightarrow 0$: gravity amp $\sim \sum$ YM partial amps ${ }^{2}$ [Bern et al '98]

KLT in CHY

Kawai-Lewellen-Tye relations: closed-string $\sim \sum$ open-string ${ }^{2}$ $\alpha^{\prime} \rightarrow 0$: gravity amp $\sim \sum$ YM partial amps 2 [Bern et al '98]

Rewrite CHY formula (with two half-integrands), in terms of two ($n-3$)!-dim vectors \mathbf{L}, \mathbf{R} and a diagonal matrix \mathbf{J}

$$
M_{n}=\int d \mu_{n} L R=\sum_{l=1}^{(n-3)!} \frac{L_{l} R_{l}}{J_{l}}=\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{R}
$$

KLT in CHY

Kawai-Lewellen-Tye relations: closed-string $\sim \sum$ open-string ${ }^{2}$ $\alpha^{\prime} \rightarrow 0$: gravity amp $\sim \sum \mathrm{YM}$ partial $\mathrm{amps}^{2}{ }_{\text {[Bern et al '98] }}$

Rewrite CHY formula (with two half-integrands), in terms of two ($n-3$)!-dim vectors \mathbf{L}, \mathbf{R} and a diagonal matrix \mathbf{J}

$$
M_{n}=\int d \mu_{n} L R=\sum_{l=1}^{(n-3)!} \frac{L_{l} R_{l}}{J_{l}}=\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{R}
$$

Remarkable role of PT's: provide a new ($n-3$)!-dim basis

$$
(n-3)!-\operatorname{dim} \text { matrix } \mathbf{E}: \quad E_{I}^{\alpha}=P T[\alpha]_{I}, \quad \text { for } \alpha \in S_{n-3} .
$$

KLT in CHY

Double-partial amps form another ($n-3$)!-dim matrix \mathbf{m} :

KLT in CHY

Double-partial amps form another ($n-3$)!-dim matrix $\mathbf{~ m}$:

$$
\mathbf{m}=\mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \Rightarrow \mathbf{J}^{-1}=\mathbf{E}^{-1} \cdot \mathbf{m} \cdot \mathbf{E}^{-1}
$$

KLT in CHY

Double-partial amps form another ($n-3$)!-dim matrix \mathbf{m} :

$$
\mathbf{m}=\mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \Rightarrow \mathbf{J}^{-1}=\mathbf{E}^{-1} \cdot \mathbf{m} \cdot \mathbf{E}^{-1}
$$

Key: all matrices are invertible. Now insert it back:

KLT in CHY

Double-partial amps form another ($n-3$)!-dim matrix \mathbf{m} :

$$
\mathbf{m}=\mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \Rightarrow \mathbf{J}^{-1}=\mathbf{E}^{-1} \cdot \mathbf{m} \cdot \mathbf{E}^{-1}
$$

Key: all matrices are invertible. Now insert it back:

$$
\begin{aligned}
M_{n} & =\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{R}=\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{J} \cdot \mathbf{J}^{-1} \cdot \mathbf{R} \\
& =\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \cdot \mathbf{m}^{-1} \cdot \mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{R} \\
& =\sum_{\alpha, \beta \in S_{n-3}} M_{n}^{L}[\alpha] m^{-1}[\alpha \mid \beta] M_{n}^{R}[\beta],
\end{aligned}
$$

KLT in CHY

Double-partial amps form another ($n-3$)!-dim matrix $\mathbf{~ m}$:

$$
\mathbf{m}=\mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \Rightarrow \mathbf{J}^{-1}=\mathbf{E}^{-1} \cdot \mathbf{m} \cdot \mathbf{E}^{-1}
$$

Key: all matrices are invertible. Now insert it back:

$$
\begin{aligned}
M_{n} & =\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{R}=\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{J} \cdot \mathbf{J}^{-1} \cdot \mathbf{R} \\
& =\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \cdot \mathbf{m}^{-1} \cdot \mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{R} \\
& =\sum_{\alpha, \beta \in S_{n-3}} M_{n}^{L}[\alpha] m^{-1}[\alpha \mid \beta] M_{n}^{R}[\beta],
\end{aligned}
$$

exactly the KLT relations! (now also for DBI, sGal etc.)

KLT in CHY

Double-partial amps form another ($n-3$)!-dim matrix $\mathbf{~ m}$:

$$
\mathbf{m}=\mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \Rightarrow \mathbf{J}^{-1}=\mathbf{E}^{-1} \cdot \mathbf{m} \cdot \mathbf{E}^{-1}
$$

Key: all matrices are invertible. Now insert it back:

$$
\begin{aligned}
M_{n} & =\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{R}=\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{J} \cdot \mathbf{J}^{-1} \cdot \mathbf{R} \\
& =\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \cdot \mathbf{m}^{-1} \cdot \mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{R} \\
& =\sum_{\alpha, \beta \in S_{n-3}} M_{n}^{L}[\alpha] m^{-1}[\alpha \mid \beta] M_{n}^{R}[\beta]
\end{aligned}
$$

exactly the KLT relations! (now also for DBI, sGal etc.)
Applying it to partial amps $\rightarrow \mathrm{BCJ}$ as basis expansion: $M_{n}[\pi]=\sum_{\alpha, \beta \in S_{n-3}} m[\pi \mid \alpha] m^{-1}[\alpha \mid \beta] M_{n}[\beta]$, for $\pi \in S_{n}$.

One-loop formula

One-loop formula

Ambitwistor string @ $g=1 \rightarrow$ one-loop formula [Adamo et al '14]

One-loop formula

Ambitwistor string @ $g=1 \rightarrow$ one-loop formula [Adamo et al '14] $q \rightarrow 0$: one-loop scattering eqs on a sphere [Geyer et al '15]

$$
\mathcal{E}_{a}=\sum_{b \neq a} \frac{k_{a} \cdot k_{b}}{\sigma_{a}-\sigma_{b}}+\frac{k_{a} \cdot \ell}{\sigma_{a}}, \quad \text { for } a=1, \ldots, n
$$

One-loop formula

Ambitwistor string @ $g=1 \rightarrow$ one-loop formula [Adamo et al ${ }^{\prime} 14$] $q \rightarrow 0$: one-loop scattering eqs on a sphere [Geyer et al '15]

$$
\mathcal{E}_{a}=\sum_{b \neq a} \frac{k_{a} \cdot k_{b}}{\sigma_{a}-\sigma_{b}}+\frac{k_{a} \cdot \ell}{\sigma_{a}}, \quad \text { for } a=1, \ldots, n
$$

Imposing $\delta(\mathcal{E})$'s gives formula for one-loop amplitudes

$$
M_{n}^{(1)}=\int d^{D} \ell \frac{1}{\ell^{2}} \int d \mu_{n}^{(1)} \mathcal{I}_{n}(\{\sigma, k, \epsilon\} ; \ell)
$$

One-loop formula

Ambitwistor string @ $g=1 \rightarrow$ one-loop formula [Adamo et al ${ }^{\prime} 14$] $q \rightarrow 0$: one-loop scattering eqs on a sphere [Geyer et al '15]

$$
\mathcal{E}_{a}=\sum_{b \neq a} \frac{k_{a} \cdot k_{b}}{\sigma_{a}-\sigma_{b}}+\frac{k_{a} \cdot \ell}{\sigma_{a}}, \quad \text { for } a=1, \ldots, n
$$

Imposing $\delta(\mathcal{E})$'s gives formula for one-loop amplitudes

$$
M_{n}^{(1)}=\int d^{D} \ell \frac{1}{\ell^{2}} \int d \mu_{n}^{(1)} \mathcal{I}_{n}(\{\sigma, k, \epsilon\} ; \ell)
$$

seems to give "wrong" integrands: propagators of the form $1 /\left((\ell+P)^{2}-\ell^{2}\right)$, but the difference integrates to zero.

One-loop formula

Ambitwistor string @ $g=1 \rightarrow$ one-loop formula [Adamo et al '14] $q \rightarrow 0$: one-loop scattering eqs on a sphere [Geyer et al '15]

$$
\mathcal{E}_{a}=\sum_{b \neq a} \frac{k_{a} \cdot k_{b}}{\sigma_{a}-\sigma_{b}}+\frac{k_{a} \cdot \ell}{\sigma_{a}}, \quad \text { for } a=1, \ldots, n
$$

Imposing $\delta(\mathcal{E})$'s gives formula for one-loop amplitudes

$$
M_{n}^{(1)}=\int d^{D} \ell \frac{1}{\ell^{2}} \int d \mu_{n}^{(1)} \mathcal{I}_{n}(\{\sigma, k, \epsilon\} ; \ell)
$$

seems to give "wrong" integrands: propagators of the form $1 /\left((\ell+P)^{2}-\ell^{2}\right)$, but the difference integrates to zero.
New rep of loop integrands: a rational function with no ambiguities (treat all propagators equally) [c.f. Baadsgaard et al '15]

Loops from trees

Loops from trees

One-loop amp as forward limit of tree amp in higher dim:

$$
M_{n}^{1-\text { loop }} \sim \int \frac{d^{D} \ell}{\ell^{2}} \sum_{I_{+}=I_{-}, \epsilon_{+}=\left(\epsilon_{-}\right)^{*}} M_{n+2}^{\text {tree }}\left(\left\{\left(k_{i} ; 0\right)\right\}, \pm(\ell,|\ell|)\right)
$$

with divergences regulated by CHY formula of trees.

Loops from trees

One-loop amp as forward limit of tree amp in higher dim:

$$
M_{n}^{1-\text { loop }} \sim \int \frac{d^{D} \ell}{\ell^{2}} \sum_{I_{+}=I_{-}, \epsilon_{+}=\left(\epsilon_{-}\right)^{*}} M_{n+2}^{\text {tree }}\left(\left\{\left(k_{i} ; 0\right)\right\}, \pm(\ell,|\ell|)\right)
$$

with divergences regulated by CHY formula of trees.
Color-sum gives one-loop color structures \rightarrow one-loop PT's

$$
\mathrm{PT}_{n}^{(1)}[1,2, \ldots, n]:=\sum_{i=1}^{n} \mathrm{PT}_{n+2}[1, \ldots, i,+,-, i+1, \ldots, n] .
$$

Loops from trees

One-loop amp as forward limit of tree amp in higher dim:

$$
M_{n}^{1-\text { loop }} \sim \int \frac{d^{D} \ell}{\ell^{2}} \sum_{I_{+}=I_{-}, \epsilon_{+}=\left(\epsilon_{-}\right)^{*}} M_{n+2}^{\text {tree }}\left(\left\{\left(k_{i} ; 0\right)\right\}, \pm(\ell,|\ell|)\right)
$$

with divergences regulated by CHY formula of trees.
Color-sum gives one-loop color structures \rightarrow one-loop PT's

$$
\mathrm{PT}_{n}^{(1)}[1,2, \ldots, n]:=\sum_{i=1}^{n} \mathrm{PT}_{n+2}[1, \ldots, i,+,-, i+1, \ldots, n]
$$

One-loop "Pfaffians" from forward-limit of tree ones, e.g.

$$
\operatorname{Pf}_{\mathbf{s}}^{(1)}=\frac{1}{\sigma_{+,-}^{2}} \operatorname{Pf} \Psi_{n}(\ell), \quad \operatorname{Pf}_{\mathbf{g}}^{(1)}=\sum_{\epsilon_{+}=\left(\epsilon_{-}\right)^{*}} \operatorname{Pf}^{\prime} \Psi_{n+2}(\ell), \quad \operatorname{Pf}_{\mathbf{f}}^{(1)}=\ldots
$$

Loops from trees

Loops from trees

Formulas for ϕ^{3}, Yang-Mills and gravity at one loop

$$
\mathcal{I}_{n}^{\phi^{3}}=\left(\mathrm{PT}_{n}^{(1)}\right)^{2}, \quad \mathcal{I}_{n}^{\mathrm{YM}}=\mathrm{PT}_{n}^{(1)} \mathrm{Pf}_{\mathrm{g}}^{(1)}, \quad \mathcal{I}_{n}^{\mathrm{GR}}=\left(\mathrm{Pf}_{\mathrm{g}}^{(1)}\right)^{2}-c_{d}\left(\mathrm{Pf}_{\mathbf{f}}^{(1)}\right)^{2},
$$

Loops from trees

Formulas for ϕ^{3}, Yang-Mills and gravity at one loop
$\mathcal{I}_{n}^{\phi^{3}}=\left(\mathrm{PT}_{n}^{(1)}\right)^{2}, \quad \mathcal{I}_{n}^{\mathrm{YM}}=\mathrm{PT}_{n}^{(1)} \mathrm{Pf}_{\mathrm{g}}^{(1)}, \quad \mathcal{I}_{n}^{\mathrm{GR}}=\left(\mathrm{Pf}_{\mathrm{g}}^{(1)}\right)^{2}-c_{d}\left(\mathrm{Pf}_{\mathbf{f}}^{(1)}\right)^{2}$,

Including fermions to give one-loop SYM and SUGRA:

$$
\mathcal{I}_{n}^{\mathrm{SYM}}=\mathrm{PT}_{n}^{(1)}\left(\mathrm{Pf}_{\mathrm{g}}^{(1)}-c_{d} \mathrm{Pf}_{\mathbf{f}}^{(1)}\right), \quad \mathcal{I}_{n}^{\text {SUGRA }}=\left(\mathrm{Pf}_{\mathbf{g}}^{(1)}-c_{d} \mathrm{Pf}_{\mathbf{f}}^{(1)}\right)^{2}
$$

Loops from trees

Formulas for ϕ^{3}, Yang-Mills and gravity at one loop
$\mathcal{I}_{n}^{\phi^{3}}=\left(\mathrm{PT}_{n}^{(1)}\right)^{2}, \quad \mathcal{I}_{n}^{\mathrm{YM}}=\mathrm{PT}_{n}^{(1)} \mathrm{Pf}_{\mathrm{g}}^{(1)}, \quad \mathcal{I}_{n}^{\mathrm{GR}}=\left(\mathrm{Pf}_{\mathrm{g}}^{(1)}\right)^{2}-c_{d}\left(\mathrm{Pf}_{\mathrm{f}}^{(1)}\right)^{2}$,
Including fermions to give one-loop SYM and SUGRA:

$$
\mathcal{I}_{n}^{\text {SYM }}=\mathrm{PT}_{n}^{(1)}\left(\mathrm{Pf}_{\mathrm{g}}^{(1)}-c_{d} \mathrm{Pf}_{\mathrm{f}}^{(1)}\right), \quad \mathcal{I}_{n}^{\text {SUGRA }}=\left(\mathrm{Pf}_{\mathrm{g}}^{(1)}-c_{d} \mathrm{Pf}_{\mathrm{f}}^{(1)}\right)^{2} .
$$

Gauge invariance, soft theorems, unitarity cuts, SUSY ... natural one-loop KLT and BCJ relations at integrand level: e.g.

$$
\operatorname{SUGRA}=\sum_{\alpha, \beta=1}^{(n-1)!-2(n-2)!} \operatorname{SYM}[\alpha]\left(\phi_{3}\right)^{-1}[\alpha \mid \beta] \operatorname{SYM}[\alpha] .
$$

Conclusion

Conclusion

Parke-Taylor formula: the beginning of the ongoing search for new structures of amplitudes in QFT's

Conclusion

Parke-Taylor formula: the beginning of the ongoing search for new structures of amplitudes in QFT's

From Witten's twistor string to CHY formulation: "connected" formulas that manifest deep structures and properties

Conclusion

Parke-Taylor formula: the beginning of the ongoing search for new structures of amplitudes in QFT's

From Witten's twistor string to CHY formulation: "connected" formulas that manifest deep structures and properties

A large class of (massless) QFT with a web of connections; (not covered) ambi-twistor strings, fermions, massive cases...

Conclusion

Parke-Taylor formula: the beginning of the ongoing search for new structures of amplitudes in QFT's

From Witten's twistor string to CHY formulation: "connected" formulas that manifest deep structures and properties

A large class of (massless) QFT with a web of connections; (not covered) ambi-twistor strings, fermions, massive cases...

Loop formulas: a new paradigm for studying loop integrands?

Conclusion

Parke-Taylor formula: the beginning of the ongoing search for new structures of amplitudes in QFT's

From Witten's twistor string to CHY formulation: "connected" formulas that manifest deep structures and properties

A large class of (massless) QFT with a web of connections; (not covered) ambi-twistor strings, fermions, massive cases...

Loop formulas: a new paradigm for studying loop integrands?

Most importantly: what is the origin of this formulation? Relations/applications to string theory \& quantum gravity?

Thank you for your attention!

$$
4 \square>4 \text { 可 } \downarrow \text { « 三 }
$$

