From MHV amplitudes to the CHY formulation

Song He

Institute of Theoretical Physics, Chinese Academy of Sciences

Based on works with Freddy Cachazo & Ellis Yuan

MHV @ 30, Fermilab

Mar 19th, 2016

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

<ロト 4 目 ト 4 目 ト 4 目 ト 目 9 9 9 9 9</p>

A miracle for n-gluon scattering [Parke, Taylor '86; Mangno, Parke, Xu '87]

$$M_n(1^+,\ldots,i^-,\ldots,j^-,\ldots,n^+) = \frac{\langle ij\rangle^4}{\langle 12\rangle\langle 23\rangle\cdots\langle n-1n\rangle\langle n1\rangle}.$$

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < @</p>

A miracle for n-gluon scattering [Parke,Taylor '86; Mangno, Parke, Xu '87]

$$M_n(1^+,\ldots,i^-,\ldots,j^-,\ldots,n^+) = \frac{\langle ij\rangle^4}{\langle 12\rangle\langle 23\rangle\cdots\langle n-1n\rangle\langle n1\rangle}$$

Numerous progress in the past 30 years [c.f. all the wonderful talks]

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < @</p>

A miracle for n-gluon scattering [Parke, Taylor '86; Mangno, Parke, Xu '87]

$$M_n(1^+,\ldots,i^-,\ldots,j^-,\ldots,n^+) = \frac{\langle ij\rangle^4}{\langle 12\rangle\langle 23\rangle\cdots\langle n-1n\rangle\langle n1\rangle}$$

Numerous progress in the past 30 years [c.f. all the wonderful talks]

The formula itself: crucial for new formulations of amplitudes!

A miracle for n-gluon scattering [Parke, Taylor '86; Mangno, Parke, Xu '87]

$$M_n(1^+,\ldots,i^-,\ldots,j^-,\ldots,n^+) = \frac{\langle ij\rangle^4}{\langle 12\rangle\langle 23\rangle\cdots\langle n-1n\rangle\langle n1\rangle}$$

Numerous progress in the past 30 years [c.f. all the wonderful talks]

The formula itself: crucial for new formulations of amplitudes!

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < @</p>

numerator: effective
$$\mathcal{N}=4$$
 SUSY $o \delta^8(\sum_{i=1}^n \lambda_i \eta_i)$ [Nair '88]

A miracle for n-gluon scattering [Parke, Taylor '86; Mangno, Parke, Xu '87]

$$M_n(1^+,\ldots,i^-,\ldots,j^-,\ldots,n^+) = \frac{\langle ij\rangle^4}{\langle 12\rangle\langle 23\rangle\cdots\langle n-1n\rangle\langle n1\rangle}$$

Numerous progress in the past 30 years [c.f. all the wonderful talks] The formula itself: crucial for new formulations of amplitudes!

numerator: effective $\mathcal{N} = 4$ SUSY $\rightarrow \delta^8 (\sum_{i=1}^n \lambda_i \eta_i)$ [Nair '88]

denominator as correlator on \mathbb{CP}^1 with punctures $z_i \sim (1, \sigma_i)$:

A miracle for n-gluon scattering [Parke, Taylor '86; Mangno, Parke, Xu '87]

$$M_n(1^+,\ldots,i^-,\ldots,j^-,\ldots,n^+) = \frac{\langle ij\rangle^4}{\langle 12\rangle\langle 23\rangle\cdots\langle n-1n\rangle\langle n1\rangle}$$

Numerous progress in the past 30 years [c.f. all the wonderful talks]

The formula itself: crucial for new formulations of amplitudes!

numerator: effective
$$\mathcal{N} = 4$$
 SUSY $\rightarrow \delta^8 \left(\sum_{i=1}^n \lambda_i \eta_i \right)$ [Nair '88]

denominator as correlator on \mathbb{CP}^1 with punctures $z_i \sim (1, \sigma_i)$:

$$PT(1,2,...,n) := \frac{1}{(12)(23)\cdots(n1)} \sim \frac{1}{(\sigma_1-\sigma_2)\cdots(\sigma_n-\sigma_1)}.$$

< ロト < 団ト < 三ト < 三ト < 三 ・ つへぐ

<ロト 4 目 ト 4 目 ト 4 目 ト 目 9 9 9 9 9</p>

N^{*k*}MHV amps ~ degree-(*k*-1) curves $\mathcal{Z}(z_i)$ in twistor space!

N^{*k*}MHV amps ~ degree-(*k*-1) curves $\mathcal{Z}(z_i)$ in twistor space!

Triggered new wave for the past decade... two prescriptions:

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < @</p>

N^{*k*}MHV amps ~ degree-(*k*-1) curves $\mathcal{Z}(z_i)$ in twistor space!

Triggered new wave for the past decade... two prescriptions:

▶ k-1 lines or product of k-1 MHV vertices: CSW rules

N^{*k*}MHV amps ~ degree-(*k*-1) curves $\mathcal{Z}(z_i)$ in twistor space!

Triggered new wave for the past decade... two prescriptions:

- ► k-1 lines or product of k-1 MHV vertices: CSW rules
- ► connected or RSV-Witten formula: a closed formula with integrals localized by degree-(k-1) constraints

N^{*k*}MHV amps ~ degree-(*k*-1) curves $\mathcal{Z}(z_i)$ in twistor space!

Triggered new wave for the past decade... two prescriptions:

- ▶ k-1 lines or product of k-1 MHV vertices: CSW rules
- ► connected or RSV-Witten formula: a closed formula with integrals localized by degree-(k-1) constraints

$$\mathcal{M}_{n,k}^{\mathcal{N}=4} \sim \int d^{2n}z \prod \delta_{n,k}^{(\mathcal{N}=4)}(\{\lambda,\tilde{\lambda},\eta\};z) PT(1,2,\ldots,n).$$

N^{*k*}MHV amps ~ degree-(*k*-1) curves $\mathcal{Z}(z_i)$ in twistor space!

Triggered new wave for the past decade... two prescriptions:

- ► k-1 lines or product of k-1 MHV vertices: CSW rules
- ► connected or RSV-Witten formula: a closed formula with integrals localized by degree-(k-1) constraints

$$\mathcal{M}_{n,k}^{\mathcal{N}=4} \sim \int d^{2n}z \prod \delta_{n,k}^{(\mathcal{N}=4)}(\{\lambda,\tilde{\lambda},\eta\};z) PT(1,2,\ldots,n).$$

PT from string correlator, and for all helicity amplitudes!

N^{*k*}MHV amps ~ degree-(*k*-1) curves $\mathcal{Z}(z_i)$ in twistor space!

Triggered new wave for the past decade... two prescriptions:

- ► k-1 lines or product of k-1 MHV vertices: CSW rules
- ► connected or RSV-Witten formula: a closed formula with integrals localized by degree-(k-1) constraints

$$\mathcal{M}_{n,k}^{\mathcal{N}=4} \sim \int d^{2n}z \prod \delta_{n,k}^{(\mathcal{N}=4)}(\{\lambda,\tilde{\lambda},\eta\};z) PT(1,2,\ldots,n).$$

PT from string correlator, and for all helicity amplitudes!

Twistor-string formulas for $\mathcal{N} = 8$ supergravity (PT replaced by Hodges determinants/BGK formula) [Cachazo, Skinner '12...]

(ロト (個) (E) (E) (E) E の()

These theories are still very special \Rightarrow natural questions:

These theories are still very special \Rightarrow natural questions:

- general dimensions, no supersymmetry?
- ► general theories: Yang-Mills, gravity, EFT's...?
- generalizations to loop level?

These theories are still very special \Rightarrow natural questions:

- general dimensions, no supersymmetry?
- ► general theories: Yang-Mills, gravity, EFT's...?
- generalizations to loop level?

One answer: CHY formulation [Cachazo, He, Yuan '13-]

These theories are still very special \Rightarrow natural questions:

- general dimensions, no supersymmetry?
- ► general theories: Yang-Mills, gravity, EFT's...?
- generalizations to loop level?

One answer: CHY formulation [Cachazo, He, Yuan '13-]

► compact formulas for gravitons, gluons, scalars,...

These theories are still very special \Rightarrow natural questions:

- general dimensions, no supersymmetry?
- ► general theories: Yang-Mills, gravity, EFT's...?
- generalizations to loop level?

One answer: CHY formulation [Cachazo, He, Yuan '13-]

- ► compact formulas for gravitons, gluons, scalars,...
- ► gauge invariance, soft theorems, double-copy etc. manifest

These theories are still very special \Rightarrow natural questions:

- general dimensions, no supersymmetry?
- ► general theories: Yang-Mills, gravity, EFT's...?
- generalizations to loop level?

One answer: CHY formulation [Cachazo, He, Yuan '13-]

- ► compact formulas for gravitons, gluons, scalars,...
- ► gauge invariance, soft theorems, double-copy etc. manifest

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < @</p>

► loops: an unorthodox rep of loop integrand [Geyer et al '14]

These theories are still very special \Rightarrow natural questions:

- general dimensions, no supersymmetry?
- ► general theories: Yang-Mills, gravity, EFT's...?
- generalizations to loop level?

One answer: CHY formulation [Cachazo, He, Yuan '13-]

- ► compact formulas for gravitons, gluons, scalars,...
- ► gauge invariance, soft theorems, double-copy etc. manifest
- ► loops: an unorthodox rep of loop integrand [Geyer et al '14]

Deep connections to string theory; ambi-twistor strings or chiral, infinite-tension limit [Mason, Skinner '13; Berkovits '13; Siegel '15...]

<ロト 4 目 ト 4 目 ト 4 目 ト 目 9 9 9 9 9</p>

► cyclicity, reflection, SL(2, C) transformation etc.

- ► cyclicity, reflection, SL(2, C) transformation etc.
- ► U(1) decoupling identity (and Kleiss-Kuijf relations)

 $PT(1,2,3...,n)+PT(2,1,3,...,n)+\cdots+PT(2,...,n-1,1,n)=0$

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < @</p>

Algebraically: (n-2)! independent PT factors

- ► cyclicity, reflection, SL(2, C) transformation etc.
- ► U(1) decoupling identity (and Kleiss-Kuijf relations)

 $PT(1,2,3...,n)+PT(2,1,3,...,n)+\cdots+PT(2,...,n-1,1,n)=0$

Algebraically: (n-2)! independent PT factors

Bern-Carrasco-Johansson (BCJ) partial-amp relations (?):

$$s_{12}PT(2,1,3,\ldots,n) + (s_{12} + s_{13})PT(2,3,1,\ldots,n) + \cdots + (s_{12} + \cdots + s_{1n-1})PT(2,\ldots,n-1,n) = 0,$$

if and only if $\sum_{b=2}^{n} \frac{s_{1,b}(*,b)}{(1,b)} = 0!$ Similarly for a = 2, ..., n.

- ► cyclicity, reflection, SL(2, C) transformation etc.
- ► U(1) decoupling identity (and Kleiss-Kuijf relations)

 $PT(1,2,3...,n)+PT(2,1,3,...,n)+\cdots+PT(2,...,n-1,1,n)=0$

Algebraically: (n-2)! independent PT factors

Bern-Carrasco-Johansson (BCJ) partial-amp relations (?):

$$s_{12}PT(2,1,3,\ldots,n) + (s_{12} + s_{13})PT(2,3,1,\ldots,n) + \cdots + (s_{12} + \cdots + s_{1n-1})PT(2,\ldots,n-1,n) = 0,$$

if and only if $\sum_{b=2}^{n} \frac{s_{1,b}(*,b)}{(1,b)} = 0!$ Similarly for a = 2, ..., n.

Satisfied on support of twistor-string constraints [Cachazo '12].
BCJ universal: consider these equations in general!

Universal, independent of dim or theory: scattering equations

Universal, independent of dim or theory: scattering equations

$$E_{a} := \sum_{\substack{b=1\\b\neq a}}^{n} \frac{s_{ab}}{\sigma_{a} - \sigma_{b}} = 0, \quad \forall a \in \{1, 2, \dots, n\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Universal, independent of dim or theory: scattering equations

$$E_{a} := \sum_{\substack{b=1\\b\neq a}}^{n} \frac{s_{ab}}{\sigma_{a} - \sigma_{b}} = 0, \quad \forall a \in \{1, 2, \dots, n\}.$$

key idea: auxiliary space that "knows" locality & unitarity

<ロト 4 目 ト 4 目 ト 4 目 ト 1 目 9 9 9 9 9</p>

Universal, independent of dim or theory: scattering equations

$$E_{a} := \sum_{\substack{b=1\\b\neq a}}^{n} \frac{s_{ab}}{\sigma_{a} - \sigma_{b}} = 0, \quad \forall a \in \{1, 2, \dots, n\}.$$

key idea: auxiliary space that "knows" locality & unitarity

• kinematic space of *n* massless particles \mathcal{K}_n

Universal, independent of dim or theory: scattering equations

$$E_{a} := \sum_{\substack{b=1\\b\neq a}}^{n} \frac{s_{ab}}{\sigma_{a} - \sigma_{b}} = 0, \quad \forall a \in \{1, 2, \dots, n\}.$$

key idea: auxiliary space that "knows" locality & unitarity

- kinematic space of *n* massless particles \mathcal{K}_n
- ▶ moduli space of *n*-punctured Riemann spheres $\mathcal{M}_{0,n}$

Universal, independent of dim or theory: scattering equations

$$E_{a} := \sum_{\substack{b=1\\b\neq a}}^{n} \frac{s_{ab}}{\sigma_{a} - \sigma_{b}} = 0, \quad \forall a \in \{1, 2, \dots, n\}.$$

key idea: auxiliary space that "knows" locality & unitarity

- kinematic space of *n* massless particles \mathcal{K}_n
- ▶ moduli space of *n*-punctured Riemann spheres $\mathcal{M}_{0,n}$
- the equations map singularities in \mathcal{K}_n to those of $\mathcal{M}_{0,n}$

Universal, independent of dim or theory: scattering equations

$$E_{a} := \sum_{\substack{b=1\\b\neq a}}^{n} \frac{s_{ab}}{\sigma_{a} - \sigma_{b}} = 0, \quad \forall a \in \{1, 2, \dots, n\}.$$

key idea: auxiliary space that "knows" locality & unitarity

- kinematic space of *n* massless particles \mathcal{K}_n
- ▶ moduli space of *n*-punctured Riemann spheres $\mathcal{M}_{0,n}$
- the equations map singularities in \mathcal{K}_n to those of $\mathcal{M}_{0,n}$
- \Rightarrow massless tree amps from solutions of the equations on $\mathcal{M}_{0,n}$

・ロト・日本・日本・日本・日本・日本

イロト イロト イヨト イヨト

990

Э

 \mathcal{K}_4 has three singularities $\{\textit{s}_{1\,2},\textit{s}_{1\,3},\textit{s}_{1\,4}\} \rightarrow 0$

 \mathcal{K}_4 has three singularities $\{\textit{s}_{1\,2},\textit{s}_{1\,3},\textit{s}_{1\,4}\} \rightarrow 0$

 $\mathcal{M}_{0,4}$ has three singularities: e.g. $\sigma_1 \to \{0, 1, \infty\}$ when we fix $\{\sigma_2, \sigma_3, \sigma_4\} = \{0, 1, \infty\}$ using $\mathrm{SL}(2, \mathbb{C})$ redundancy

・ ロ ト ・ 何 ト ・ 三 ト ・ 三 ト

Sac

 \mathcal{K}_4 has three singularities $\{\textit{s}_{1\,2},\textit{s}_{1\,3},\textit{s}_{1\,4}\} \rightarrow 0$

 $\mathcal{M}_{0,4}$ has three singularities: e.g. $\sigma_1 \to \{0, 1, \infty\}$ when we fix $\{\sigma_2, \sigma_3, \sigma_4\} = \{0, 1, \infty\}$ using $\mathrm{SL}(2, \mathbb{C})$ redundancy

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

SQC

The equations (one independent) connect them: $\sigma_1 = -\frac{s_{12}}{s_{14}}$

 \mathcal{K}_4 has three singularities $\{\textit{s}_{1\,2},\textit{s}_{1\,3},\textit{s}_{1\,4}\} \rightarrow 0$

 $\mathcal{M}_{0,4}$ has three singularities: e.g. $\sigma_1 \to \{0, 1, \infty\}$ when we fix $\{\sigma_2, \sigma_3, \sigma_4\} = \{0, 1, \infty\}$ using $\mathrm{SL}(2, \mathbb{C})$ redundancy

The equations (one independent) connect them: $\sigma_1 = -\frac{s_{12}}{s_{14}}$

Higher points: multi-factorizations vs. higher-dim singularities

Tree amps = contour integral in $M_{n,0}$ = sum over solutions

$$M_n = \int \underbrace{\frac{d^n \sigma}{\operatorname{vol} \operatorname{SL}(2, \mathbb{C})} \prod_a' \delta(E_a)}_{d\mu_n} \mathcal{I}(\{k, \epsilon, \sigma\}) = \sum_{\{\sigma\} \in \operatorname{solns.}} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Tree amps = contour integral in $M_{n,0}$ = sum over solutions

$$M_n = \int \underbrace{\frac{d^n \sigma}{\operatorname{vol} \operatorname{SL}(2, \mathbb{C})} \prod_{a}' \delta(E_a)}_{d\mu_n} \mathcal{I}(\{k, \epsilon, \sigma\}) = \sum_{\{\sigma\} \in \operatorname{solns.}} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}$$

▶ $d\mu_n$ contains n-3 integrals and n-3 delta functions

Tree amps = contour integral in $\mathcal{M}_{n,0}$ = sum over solutions

$$M_n = \int \underbrace{\frac{d^n \sigma}{\operatorname{vol} \operatorname{SL}(2, \mathbb{C})} \prod_{a}' \delta(E_a)}_{d\mu_n} \mathcal{I}(\{k, \epsilon, \sigma\}) = \sum_{\{\sigma\} \in \operatorname{solns.}} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}$$

- ► $d\mu_n$ contains n-3 integrals and n-3 delta functions
- ► *J* is the Jacobian from solving the equations: $J \sim |\frac{\partial E_a}{\partial \sigma_b}|$

ション (中国) (日) (日) (日) (日) (日)

Tree amps = contour integral in $M_{n,0}$ = sum over solutions

$$M_n = \int \underbrace{\frac{d^n \sigma}{\operatorname{vol} \operatorname{SL}(2, \mathbb{C})} \prod_{a}' \delta(E_a)}_{d\mu_n} \mathcal{I}(\{k, \epsilon, \sigma\}) = \sum_{\{\sigma\} \in \operatorname{solns.}} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}$$

- ► $d\mu_n$ contains n-3 integrals and n-3 delta functions
- ► *J* is the Jacobian from solving the equations: $J \sim |\frac{\partial E_a}{\partial \sigma_b}|$

"CHY integrand" \mathcal{I} depends on the theory, determined by

ション (中国) (日) (日) (日) (日) (日)

Tree amps = contour integral in $M_{n,0}$ = sum over solutions

$$M_n = \int \underbrace{\frac{d^n \sigma}{\operatorname{vol} \operatorname{SL}(2, \mathbb{C})} \prod_{a}' \delta(E_a)}_{d\mu_n} \mathcal{I}(\{k, \epsilon, \sigma\}) = \sum_{\{\sigma\} \in \operatorname{solns.}} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}$$

- ► $d\mu_n$ contains n-3 integrals and n-3 delta functions
- ► *J* is the Jacobian from solving the equations: $J \sim |\frac{\partial E_a}{\partial \sigma_b}|$

"CHY integrand" ${\mathcal I}$ depends on the theory, determined by

basic consistency: mass dimension, statistics,...

Tree amps = contour integral in $M_{n,0}$ = sum over solutions

$$M_n = \int \underbrace{\frac{d^n \sigma}{\operatorname{vol} \operatorname{SL}(2, \mathbb{C})} \prod_{a}' \delta(E_a)}_{d\mu_n} \mathcal{I}(\{k, \epsilon, \sigma\}) = \sum_{\{\sigma\} \in \operatorname{solns.}} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}$$

- ► $d\mu_n$ contains n-3 integrals and n-3 delta functions
- ► *J* is the Jacobian from solving the equations: $J \sim |\frac{\partial E_a}{\partial \sigma_b}|$

"CHY integrand" \mathcal{I} depends on the theory, determined by

- basic consistency: mass dimension, statistics,...
- importantly, gauge invariance and symmetries

Tree amps = contour integral in $M_{n,0}$ = sum over solutions

$$M_n = \int \underbrace{\frac{d^n \sigma}{\operatorname{vol} \operatorname{SL}(2, \mathbb{C})} \prod_{a}' \delta(E_a)}_{d\mu_n} \mathcal{I}(\{k, \epsilon, \sigma\}) = \sum_{\{\sigma\} \in \operatorname{solns.}} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}$$

- ► $d\mu_n$ contains n-3 integrals and n-3 delta functions
- ► *J* is the Jacobian from solving the equations: $J \sim |\frac{\partial E_a}{\partial \sigma_b}|$

"CHY integrand" \mathcal{I} depends on the theory, determined by

- ► basic consistency: mass dimension, statistics,...
- importantly, gauge invariance and symmetries
- "proof": factorization + soft limits [also see Goddard, Dolan '13]

・ロト・日本・日本・日本・日本・日本

$$\operatorname{SL}(2,\mathbb{C}): \sigma_{\boldsymbol{a}} \to \frac{\alpha \, \sigma_{\boldsymbol{a}} + \beta}{\gamma \, \sigma_{\boldsymbol{a}} + \delta}, \quad \mathcal{I} \xrightarrow{SL(2,\mathbb{C})} \mathcal{I} \prod_{\boldsymbol{a}=1}^{n} (\gamma \, \sigma_{\boldsymbol{a}} + \delta)^{4}$$

$$\operatorname{SL}(2,\mathbb{C}): \sigma_{a} \to \frac{\alpha \, \sigma_{a} + \beta}{\gamma \, \sigma_{a} + \delta}, \quad \mathcal{I} \xrightarrow{SL(2,\mathbb{C})} \mathcal{I} \prod_{a=1}^{n} (\gamma \, \sigma_{a} + \delta)^{4}$$

 $PT_n \rightarrow \prod_{a=1}^n (\gamma \sigma_a + \delta)^2 PT_n$: correct weight as half-integrand

$$PT[\pi] := \frac{1}{(\sigma_{\pi(1)} - \sigma_{\pi(2)}) (\sigma_{\pi(2)} - \sigma_{\pi(3)}) \cdots (\sigma_{\pi(n)} - \sigma_{\pi(1)})}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\operatorname{SL}(2,\mathbb{C}): \sigma_{a} \to \frac{\alpha \, \sigma_{a} + \beta}{\gamma \, \sigma_{a} + \delta}, \quad \mathcal{I} \xrightarrow{SL(2,\mathbb{C})} \mathcal{I} \prod_{a=1}^{''} (\gamma \, \sigma_{a} + \delta)^{4}$$

-

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $PT_n \rightarrow \prod_{a=1}^n (\gamma \sigma_a + \delta)^2 PT_n$: correct weight as half-integrand

$$\Pr[\pi] := \frac{1}{(\sigma_{\pi(1)} - \sigma_{\pi(2)}) (\sigma_{\pi(2)} - \sigma_{\pi(3)}) \cdots (\sigma_{\pi(n)} - \sigma_{\pi(1)})}$$

The simplest integrand: two copies of PT ($SL(2, \mathbb{C})$ weight)

$$m[\pi|\rho] := \int \frac{d^n \sigma_a}{\text{vol.}} \prod_a' \delta(\sum_{b \neq a} \frac{k_a \cdot k_b}{\sigma_a - \sigma_b}) \operatorname{PT}[\pi] \operatorname{PT}[\rho]$$

$$\operatorname{SL}(2,\mathbb{C}): \sigma_{a} \to \frac{\alpha \, \sigma_{a} + \beta}{\gamma \, \sigma_{a} + \delta}, \quad \mathcal{I} \xrightarrow{SL(2,\mathbb{C})} \mathcal{I} \prod_{a=1}^{''} (\gamma \, \sigma_{a} + \delta)^{4}$$

-

 $PT_n \rightarrow \prod_{a=1}^n (\gamma \sigma_a + \delta)^2 PT_n$: correct weight as half-integrand

$$\Pr[\pi] := \frac{1}{(\sigma_{\pi(1)} - \sigma_{\pi(2)}) (\sigma_{\pi(2)} - \sigma_{\pi(3)}) \cdots (\sigma_{\pi(n)} - \sigma_{\pi(1)})}$$

The simplest integrand: two copies of PT (SL(2, \mathbb{C}) weight)

$$m[\pi|\rho] := \int \frac{d^n \sigma_a}{\text{vol.}} \prod_a' \delta(\sum_{b \neq a} \frac{k_a \cdot k_b}{\sigma_a - \sigma_b}) \operatorname{PT}[\pi] \operatorname{PT}[\rho]$$

What does the formula compute?

 $m[\pi|\rho]$ computes the sum of trivalent scalar diagrams (massless propagators) that are consistent with both π , ρ orderings

$$m[\pi|\rho] = \sum_{g \in T(\pi) \cap T(\rho)} \prod_{e \in E(g)} \frac{1}{P_e^2}$$

 $m[\pi|\rho]$ computes the sum of trivalent scalar diagrams (massless propagators) that are consistent with both π , ρ orderings

$$m[\pi|\rho] = \sum_{g \in T(\pi) \cap T(\rho)} \prod_{e \in E(g)} \frac{1}{P_e^2}$$

Sum of trivalent scalar diagrams \Leftrightarrow certain $m[\pi|\rho]$. Examples:

 $m[\pi|\rho]$ computes the sum of trivalent scalar diagrams (massless propagators) that are consistent with both π, ρ orderings

$$m[\pi|\rho] = \sum_{g \in T(\pi) \cap T(\rho)} \prod_{e \in E(g)} \frac{1}{P_e^2}$$

Sum of trivalent scalar diagrams \Leftrightarrow certain $m[\pi|\rho]$. Examples:

$$m[1234|1243] = \frac{1}{s_{12}}, m[1234|1324] = \frac{1}{s_{14}}, m[1234|1234] = \frac{1}{s_{12}} + \frac{1}{s_{14}}$$

 $m[\pi|\rho]$ computes the sum of trivalent scalar diagrams (massless propagators) that are consistent with both π , ρ orderings

$$m[\pi|\rho] = \sum_{g \in T(\pi) \cap T(\rho)} \prod_{e \in E(g)} \frac{1}{P_e^2}$$

Sum of trivalent scalar diagrams \Leftrightarrow certain $m[\pi|\rho]$. Examples:

$$m[1234|1243] = \frac{1}{s_{12}}, m[1234|1324] = \frac{1}{s_{14}}, m[1234|1234] = \frac{1}{s_{12}} + \frac{1}{s_{14}}$$
$$m[12345|12534] = \frac{1}{s_{12}}, m[12345|12543] = \frac{1}{s_{12}} + \frac{1}{s_{12}}$$

 $m[\pi|\rho]$ computes the sum of trivalent scalar diagrams (massless propagators) that are consistent with both π , ρ orderings

$$m[\pi|\rho] = \sum_{g \in T(\pi) \cap T(\rho)} \prod_{e \in E(g)} \frac{1}{P_e^2}$$

Sum of trivalent scalar diagrams \Leftrightarrow certain $m[\pi|\rho]$. Examples:

<ロト < 個 ト < 直 ト < 直 ト 三 の < ()</p>

<ロト 4 目 ト 4 目 ト 4 目 ト 目 9 9 9 9 9</p>

Theorem: there exists \mathcal{I} for any sensible massless tree amps

Theorem: there exists \mathcal{I} for any sensible massless tree amps However, generally very complicated, no closed formula

Theorem: there exists \mathcal{I} for any sensible massless tree amps However, generally very complicated, no closed formula

 ϕ^3 theory with flavors, e.g. in bi-adjoint of U(*N*)× U(*N'*): vertex $f^{IJK}f^{I'J'K'}\phi_{II'}\phi_{JJ'}\phi_{KK'} \Rightarrow$ trivalent graphs with f's

Theorem: there exists \mathcal{I} for any sensible massless tree amps However, generally very complicated, no closed formula

 ϕ^3 theory with flavors, e.g. in bi-adjoint of U(*N*)× U(*N'*): vertex $f^{IJK}f^{I'J'K'}\phi_{II'}\phi_{JJ'}\phi_{KK'} \Rightarrow$ trivalent graphs with f's

Similar to gluons, define color-dressed PT for each group,

$$\mathcal{C} = \sum_{\pi \in S_n/Z_n} \operatorname{Tr}(\mathcal{T}^{I_{\pi(1)}} \cdots \mathcal{T}^{I_{\pi(n)}}) \operatorname{PT}[\pi],$$

Theorem: there exists \mathcal{I} for any sensible massless tree amps However, generally very complicated, no closed formula

 ϕ^3 theory with flavors, e.g. in bi-adjoint of U(*N*)× U(*N'*): vertex $f^{IJK}f^{I'J'K'}\phi_{II'}\phi_{JJ'}\phi_{KK'} \Rightarrow$ trivalent graphs with f's

Similar to gluons, define color-dressed PT for each group,

$$\mathcal{C} = \sum_{\pi \in S_n/Z_n} \operatorname{Tr}(T^{I_{\pi(1)}} \cdots T^{I_{\pi(n)}}) \operatorname{PT}[\pi],$$

CHY formula for bi-adjoint ϕ^3 amplitudes: gives sum of all $m[\pi|\rho]$'s with flavor factors (note permutation invariance)

$$\mathcal{M}_{n}^{\phi^{3}} = \int d\mu_{n} \, \mathcal{C} \, \mathcal{C}' = \sum_{\pi,\rho} \operatorname{Tr}(\mathcal{T}^{I_{\pi(1)}} \cdots \mathcal{T}^{I_{\pi(n)}}) \, \operatorname{Tr}(\mathcal{T}^{I_{\rho(1)}} \cdots \mathcal{T}^{I_{\rho(n)}}) \, \boldsymbol{m}[\pi|\rho]$$

< ロ ト 4 団 ト 4 三 ト 4 三 ト 一 三 の へ ()</p>

<ロト 4 目 ト 4 目 ト 4 目 ト 目 9 9 9 9 9</p>

Need a building block to encode gluon polarizations:

Need a building block to encode gluon polarizations:

► Carry half of $SL(2, \mathbb{C})$ weight, mass dimension $[M]^{n-2}$

Need a building block to encode gluon polarizations:

► Carry half of *SL*(2, ℂ) weight, mass dimension [*M*]^{*n*-2}

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < @</p>

• permutation invariant, multi-linear in $\{\epsilon_a\}$

Need a building block to encode gluon polarizations:

- ► Carry half of $SL(2, \mathbb{C})$ weight, mass dimension $[M]^{n-2}$
- permutation invariant, multi-linear in $\{\epsilon_a\}$
- most important: gauge invariance!

Need a building block to encode gluon polarizations:

- ► Carry half of *SL*(2, ℂ) weight, mass dimension [*M*]^{*n*-2}
- permutation invariant, multi-linear in $\{\epsilon_a\}$
- most important: gauge invariance!

Introduce $2n \times 2n$ skew matrix Ψ , with four $n \times n$ blocks

$$\Psi := \left(\begin{array}{cc} A & -C^{\mathsf{T}} \\ C & B \end{array}\right),$$

Need a building block to encode gluon polarizations:

- ► Carry half of *SL*(2, ℂ) weight, mass dimension [*M*]^{*n*-2}
- permutation invariant, multi-linear in $\{\epsilon_a\}$
- most important: gauge invariance!

Introduce $2n \times 2n$ skew matrix Ψ , with four $n \times n$ blocks

$$\Psi := \begin{pmatrix} A & -C^{T} \\ C & B \end{pmatrix},$$
$$A_{a,b} := \begin{cases} \frac{k_{a} \cdot k_{b}}{\sigma_{a,b}} & a \neq b \\ 0 & a = b \end{cases}, \quad B_{a,b} := \begin{cases} \frac{\epsilon_{a} \cdot \epsilon_{b}}{\sigma_{a,b}} & a \neq b \\ 0 & a = b \end{cases},$$
$$C_{a,b} := \begin{cases} \frac{\epsilon_{a} \cdot k_{b}}{\sigma_{a,b}} & a \neq b \\ -\sum_{c \neq a} C_{a,c} & a = b \end{cases}$$

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < @</p>

CHY formula for Yang-Mills

The building block should be pfaffian of Ψ (multilinear in ϵ 's)
The building block should be pfaffian of Ψ (multilinear in ϵ 's) a subtlety: Ψ is degenerate \Rightarrow reduced pfaffian: $Pf'\Psi := \frac{Pf|\Psi|_{i,j}^{i,j}}{\sigma_{i,i}}$

The building block should be pfaffian of Ψ (multilinear in ϵ 's) a subtlety: Ψ is degenerate \Rightarrow reduced pfaffian: $Pf'\Psi := \frac{Pf|\Psi|_{i,j}^{i,j}}{\sigma_{i,j}}$

The other copy is the Parke-Taylor factor, or C for colors:

$$M_n^{\mathrm{YM}}[\pi] = \int d\mu_n \operatorname{PT}[\pi] \operatorname{Pf}' \Psi \Rightarrow \mathcal{M}_n^{\mathrm{YM}} = \int d\mu_n \, \mathcal{C} \, \operatorname{Pf}' \Psi$$

The building block should be pfaffian of Ψ (multilinear in ϵ 's) a subtlety: Ψ is degenerate \Rightarrow reduced pfaffian: $Pf'\Psi := \frac{Pf|\Psi|_{i,j}^{i,j}}{\sigma_{i,j}}$

The other copy is the Parke-Taylor factor, or C for colors:

$$M_n^{\mathrm{YM}}[\pi] = \int d\mu_n \operatorname{PT}[\pi] \operatorname{Pf}' \Psi \Rightarrow \mathcal{M}_n^{\mathrm{YM}} = \int d\mu_n \operatorname{\mathcal{C}} \operatorname{Pf}' \Psi$$

Complete S-matrix for any number of gluons in any dimension

The building block should be pfaffian of Ψ (multilinear in ϵ 's) a subtlety: Ψ is degenerate \Rightarrow reduced pfaffian: $Pf'\Psi := \frac{Pf|\Psi|_{i,j}^{i,j}}{\sigma_{i,j}}$

The other copy is the Parke-Taylor factor, or C for colors:

$$\mathcal{M}_n^{\mathrm{YM}}[\pi] = \int d\mu_n \operatorname{PT}[\pi] \operatorname{Pf}' \Psi \Rightarrow \mathcal{M}_n^{\mathrm{YM}} = \int d\mu_n \operatorname{\mathcal{C}} \operatorname{Pf}' \Psi$$

Complete S-matrix for any number of gluons in any dimension

The origin of $Pf'\Psi$: by scattering equations, it is exactly given by open-string correlators in the field-theory limit

$$\mathrm{Pf}'\Psi \sim \langle V^{(0)}(\sigma_1) \dots V^{(-1)}(\sigma_i) \dots V^{(-1)}(\sigma_j) \dots V^{(0)}(\sigma_n) \rangle$$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 目 9 9 9 9 9</p>

Gauge invariance

Gauge invariance of gluons: $\epsilon^{\mu}_{a} \sim \epsilon^{\mu}_{a} + \alpha k^{\mu}_{a}$

Gauge invariance

Gauge invariance of gluons: $\epsilon_a^{\mu} \sim \epsilon_a^{\mu} + \alpha k_a^{\mu}$

$$\begin{pmatrix} 0 & \cdots & \sum_{b=2}^{n} \frac{k_1 \cdot k_b}{\sigma_{1,b}} & \cdots \\ \frac{k_2 \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{k_2 \cdot k_1}{\sigma_{2,1}} & \cdots \\ \vdots & & \vdots & & \vdots \\ \frac{k_n \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{k_n \cdot k_1}{\sigma_{2,1}} & \cdots \\ -\sum_{b=2}^{n} \frac{k_1 \cdot k_b}{\sigma_{1,b}} & \cdots & 0 & \cdots \\ \frac{\epsilon_2 \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{\epsilon_2 \cdot k_1}{\sigma_{2,1}} & \cdots \\ \vdots & & \vdots & & \\ \frac{\epsilon_n \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{\epsilon_n \cdot k_1}{\sigma_{2,1}} & \cdots \end{pmatrix}$$

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < ぐ</p>

Gauge invariance

Gauge invariance of gluons: $\epsilon_a^{\mu} \sim \epsilon_a^{\mu} + \alpha k_a^{\mu}$

$$\begin{pmatrix} 0 & \cdots & \sum_{b=2}^{n} \frac{k_1 \cdot k_b}{\sigma_{1,b}} & \cdots \\ \frac{k_2 \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{k_2 \cdot k_1}{\sigma_{2,1}} & \cdots \\ \vdots & & \vdots & & \vdots \\ \frac{k_n \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{k_n \cdot k_1}{\sigma_{2,1}} & \cdots \\ -\sum_{b=2}^{n} \frac{k_1 \cdot k_b}{\sigma_{1,b}} & \cdots & 0 & \cdots \\ \frac{\epsilon_2 \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{\epsilon_2 \cdot k_1}{\sigma_{2,1}} & \cdots \\ \vdots & & \vdots & & \\ \frac{\epsilon_n \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{\epsilon_n \cdot k_1}{\sigma_{2,1}} & \cdots \end{pmatrix}$$

Substituting $\epsilon_1 \rightarrow k_1 \operatorname{Pf}' \Psi = 0$ for each solution of scattering equations \Longrightarrow gauge invariance manifest from CHY formula!

 $\mathcal{C} \times \mathcal{C}' \Rightarrow$ bi-adjoint scalars, $\mathcal{C} \times Pf' \Psi \Rightarrow$ Yang-Mills

 $\mathcal{C} \times \mathcal{C}' \Rightarrow$ bi-adjoint scalars, $\mathcal{C} \times Pf' \Psi \Rightarrow$ Yang-Mills

How about gravity? no color, polarization tensor $h^{\mu\nu} = \epsilon^{\mu}\epsilon^{\nu}$

 $C \times C' \Rightarrow$ bi-adjoint scalars, $C \times Pf'\Psi \Rightarrow$ Yang-Mills How about gravity? no color, polarization tensor $h^{\mu\nu} = \epsilon^{\mu}\epsilon^{\nu}$

In general $\epsilon^{\mu} \epsilon^{\prime \nu}$ gives $h^{\mu\nu} + B^{\mu\nu} + \phi$; CHY formula for gravity

$$M_n^{h+B+\phi} = \int d\mu_n \operatorname{Pf}'\Psi(\epsilon) \operatorname{Pf}'\Psi(\epsilon') \longrightarrow M_n^{\operatorname{GR}} = \int d\mu_n \det'\Psi(\epsilon)$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

 $C \times C' \Rightarrow$ bi-adjoint scalars, $C \times Pf'\Psi \Rightarrow$ Yang-Mills How about gravity? no color, polarization tensor $h^{\mu\nu} = \epsilon^{\mu}\epsilon^{\nu}$

In general $\epsilon^{\mu} \epsilon^{\prime \nu}$ gives $h^{\mu\nu} + B^{\mu\nu} + \phi$; CHY formula for gravity

$$M_n^{h+B+\phi} = \int d\mu_n \operatorname{Pf}'\Psi(\epsilon) \operatorname{Pf}'\Psi(\epsilon') \longrightarrow M_n^{\operatorname{GR}} = \int d\mu_n \det'\Psi(\epsilon)$$

Compete S-matrix of gravitons \Rightarrow hidden simplicity of GR

 $C \times C' \Rightarrow$ bi-adjoint scalars, $C \times Pf'\Psi \Rightarrow$ Yang-Mills How about gravity? no color, polarization tensor $h^{\mu\nu} = \epsilon^{\mu}\epsilon^{\nu}$

In general $\epsilon^{\mu} \epsilon^{\prime \nu}$ gives $h^{\mu\nu} + B^{\mu\nu} + \phi$; CHY formula for gravity

$$M_n^{h+B+\phi} = \int d\mu_n \operatorname{Pf}'\Psi(\epsilon) \operatorname{Pf}'\Psi(\epsilon') \longrightarrow M_n^{\operatorname{GR}} = \int d\mu_n \det'\Psi(\epsilon)$$

Compete S-matrix of gravitons \Rightarrow hidden simplicity of GR

Unified formula for massless theories with spin s = 0, 1, 2

$$\mathcal{I}^{\mathrm{spin s}} = \mathcal{C}^{2-s} \times (\mathrm{Pf}'\Psi)^{s}$$

 $C \times C' \Rightarrow$ bi-adjoint scalars, $C \times Pf'\Psi \Rightarrow$ Yang-Mills How about gravity? no color, polarization tensor $h^{\mu\nu} = \epsilon^{\mu}\epsilon^{\nu}$

In general $\epsilon^{\mu} \epsilon^{\prime \nu}$ gives $h^{\mu\nu} + B^{\mu\nu} + \phi$; CHY formula for gravity

$$M_n^{h+B+\phi} = \int d\mu_n \operatorname{Pf}'\Psi(\epsilon) \operatorname{Pf}'\Psi(\epsilon') \longrightarrow M_n^{\operatorname{GR}} = \int d\mu_n \det'\Psi(\epsilon)$$

Compete S-matrix of gravitons \Rightarrow hidden simplicity of GR

Unified formula for massless theories with spin s = 0, 1, 2

$$\mathcal{I}^{\rm spin \ s} = \mathcal{C}^{2-s} \times ({\rm Pf}' \Psi)^s$$

The third way of seeing "GR = YM^2/ϕ^3 " after [KLT '86, BCJ' 08].

Diffeomorphism invariance

Again manifest in CHY formulation: det' $\Psi = 0$ as $\epsilon_a \rightarrow k_a$

Diffeomorphism invariance

Again manifest in CHY formulation: det' $\Psi = 0$ as $\epsilon_a \rightarrow k_a$

$$\begin{pmatrix} 0 & \cdots & \sum_{b=2}^{n} \frac{k_1 \cdot k_b}{\sigma_{1,b}} & \cdots \\ \frac{k_2 \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{k_2 \cdot k_1}{\sigma_{2,1}} & \cdots \\ \vdots & & \vdots & & \\ \frac{k_n \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{k_n \cdot k_1}{\sigma_{2,1}} & \cdots \\ -\sum_{b=2}^{n} \frac{k_1 \cdot k_b}{\sigma_{1,b}} & \cdots & 0 & \cdots \\ \frac{\epsilon_2 \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{\epsilon_2 \cdot k_1}{\sigma_{2,1}} & \cdots \\ \vdots & & & \vdots \\ \frac{\epsilon_n \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{\epsilon_n \cdot k_1}{\sigma_{2,1}} & \cdots \end{pmatrix}$$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ()

Diffeomorphism invariance

Again manifest in CHY formulation: det' $\Psi = 0$ as $\epsilon_a \rightarrow k_a$

$$\begin{pmatrix} 0 & \cdots & \sum_{b=2}^{n} \frac{k_1 \cdot k_b}{\sigma_{1,b}} & \cdots \\ \frac{k_2 \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{k_2 \cdot k_1}{\sigma_{2,1}} & \cdots \\ \vdots & & \vdots & & \vdots \\ \frac{k_n \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{k_n \cdot k_1}{\sigma_{2,1}} & \cdots \\ -\sum_{b=2}^{n} \frac{k_1 \cdot k_b}{\sigma_{1,b}} & \cdots & 0 & \cdots \\ \frac{\epsilon_2 \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{\epsilon_2 \cdot k_1}{\sigma_{2,1}} & \cdots \\ \vdots & & \vdots & & \\ \frac{\epsilon_n \cdot k_1}{\sigma_{2,1}} & \cdots & \frac{\epsilon_n \cdot k_1}{\sigma_{2,1}} & \cdots \end{pmatrix}$$

 $Pf'\Psi(\epsilon) \times Pf'\Psi(\epsilon')$ correspond to closed-string correlator by using scattering equations: closed-string = open-string ²

<ロト 4 目 ト 4 目 ト 4 目 ト 目 9 9 9 9 9</p>

Amplitude as a sum of (n-3)! "virtual amplitudes":

$$M_n = \sum_{l=1}^{(n-3)!} \frac{\mathcal{I}_n^{(l)}(\{k,\epsilon\})}{\mathcal{J}_n^{(l)}(\{s_{ab}\})} := \sum_{l=1}^{(n-3)!} V_n^{(l)}(\{k,\epsilon\})$$

Amplitude as a sum of (n-3)! "virtual amplitudes":

$$M_n = \sum_{l=1}^{(n-3)!} \frac{\mathcal{I}_n^{(l)}(\{k,\epsilon\})}{\mathcal{J}_n^{(l)}(\{s_{ab}\})} := \sum_{l=1}^{(n-3)!} V_n^{(l)}(\{k,\epsilon\})$$

 $V_n^{(I)}$ has (almost) all properties of the amplitude: color, gauge/diff invariance, factorization, and "GR = YM²/ ϕ^{3} ".

Amplitude as a sum of (n-3)! "virtual amplitudes":

$$M_n = \sum_{l=1}^{(n-3)!} \frac{\mathcal{I}_n^{(l)}(\{k,\epsilon\})}{\mathcal{J}_n^{(l)}(\{s_{ab}\})} := \sum_{l=1}^{(n-3)!} V_n^{(l)}(\{k,\epsilon\})$$

 $V_n^{(I)}$ has (almost) all properties of the amplitude: color, gauge/diff invariance, factorization, and "GR = YM²/ ϕ^{3} ".

But they are highly non-local In 4d, solutions fall into sectors $d = 1, ..., n-3 \rightarrow \text{local}$, helicity amps in GR and YM.

Amplitude as a sum of (n-3)! "virtual amplitudes":

$$M_n = \sum_{I=1}^{(n-3)!} \frac{\mathcal{I}_n^{(I)}(\{k,\epsilon\})}{\mathcal{J}_n^{(I)}(\{s_{ab}\})} := \sum_{I=1}^{(n-3)!} V_n^{(I)}(\{k,\epsilon\})$$

 $V_n^{(I)}$ has (almost) all properties of the amplitude: color, gauge/diff invariance, factorization, and "GR = YM²/ ϕ^{3} ".

But they are highly non-local In 4d, solutions fall into sectors $d = 1, ..., n-3 \rightarrow \text{local}$, helicity amps in GR and YM.

Alternatively, $Pf'\Psi = \sum_{\alpha} N_{\alpha}PT[\alpha] \rightarrow \text{local, trivalent-graph}$ expansion with BCJ numerators (but gauge variant).

シック 単 (ボッ・ボッ・(中)・(ロ・

We can generate new formulas from old ones, e.g. compactify $R^{d+m} \rightarrow R^d$ with $K = (k^{(d)} \mid 0), \mathcal{E} = (\epsilon^{(d)} \mid 0)$ or $(0 \mid e^{(m)})$:

We can generate **new formulas** from old ones, e.g. compactify $R^{d+m} \rightarrow R^d$ with $K = (k^{(d)} \mid 0), \mathcal{E} = (\epsilon^{(d)} \mid 0)$ or $(0 \mid e^{(m)})$:

 $YM \rightarrow Yang-Mills-scalar \text{ or } GR \rightarrow Einstein-Maxwell,$

$$\operatorname{Pf}'\Psi(K,\mathcal{E}) \to \operatorname{Pf}'[\Psi](k,\epsilon_g) \operatorname{Pf}[X]_s, \quad X_{ab} := \frac{\delta^{I_a I_b}}{\sigma_a - \sigma_b} (1 - \delta_{ab}),$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

We can generate new formulas from old ones, e.g. compactify $R^{d+m} \rightarrow R^d$ with $K = (k^{(d)} \mid 0), \mathcal{E} = (\epsilon^{(d)} \mid 0)$ or $(0 \mid e^{(m)})$:

 $YM \rightarrow Yang-Mills-scalar \text{ or } GR \rightarrow Einstein-Maxwell,$

$$\operatorname{Pf}'\Psi(K,\mathcal{E}) \to \operatorname{Pf}'[\Psi](k,\epsilon_g) \operatorname{Pf}[X]_s, \quad X_{ab} := \frac{\delta^{I_a I_b}}{\sigma_a - \sigma_b} (1 - \delta_{ab}),$$

Pure-photon (scalar) amps in EM (YMs) particularly simple:

$$M_{\gamma^n}^{
m EM} = \int d\mu_n \, {
m Pf}' A \, {
m Pf} X \, {
m Pf}' \Psi(ilde{\epsilon}) \,, \quad M_{s^n}^{
m YMs} = \int d\mu_n \, {
m Pf}' A \, {
m Pf} X \, {\cal C} \,.$$

We can generate new formulas from old ones, e.g. compactify $R^{d+m} \rightarrow R^d$ with $K = (k^{(d)} \mid 0), \mathcal{E} = (\epsilon^{(d)} \mid 0)$ or $(0 \mid e^{(m)})$:

 $YM \rightarrow Yang-Mills-scalar \text{ or } GR \rightarrow Einstein-Maxwell,$

$$\operatorname{Pf}'\Psi(K,\mathcal{E}) \to \operatorname{Pf}'[\Psi](k,\epsilon_g) \operatorname{Pf}[X]_s, \quad X_{ab} := \frac{\delta^{I_a I_b}}{\sigma_a - \sigma_b} (1 - \delta_{ab}),$$

Pure-photon (scalar) amps in EM (YMs) particularly simple:

$$M^{\mathrm{EM}}_{\gamma^n} = \int d\mu_n \, \mathrm{Pf}' A \, \mathrm{Pf} X \, \mathrm{Pf}' \Psi(\widetilde{\epsilon}) \,, \quad M^{\mathrm{YMs}}_{s^n} = \int d\mu_n \, \mathrm{Pf}' A \, \mathrm{Pf} X \, \mathcal{C} \,.$$

A corollary of the latter is a intriguing formula for ϕ^4 theory.

シック 単 (ボッ・ボッ・(中)・(ロ・

New formulas from $\mathrm{Pf}'A\to EFT's$ with massless scalars

New formulas from $\mathrm{Pf}' A \to \mathrm{EFT}' \mathrm{s}$ with massless scalars

 $\int d\mu_n \, (\mathrm{Pf}'A)^2 \, \mathcal{C}$? U(N)-flavored scalars with two derivatives?

New formulas from $Pf'A \rightarrow EFT's$ with massless scalars

 $\int d\mu_n \, (\mathrm{Pf}' A)^2 \, \mathcal{C}$? U(N)-flavored scalars with two derivatives?

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < @</p>

The chiral Lagrangian (NLSM), $\mathcal{L} = \text{Tr}(\partial_{\mu}U^{+}\partial^{\mu}U)$!

New formulas from $Pf'A \rightarrow EFT's$ with massless scalars

 $\int d\mu_n \, (Pf'A)^2 \, \mathcal{C} ? \, U(N) \text{-flavored scalars with two derivatives}?$ The chiral Lagrangian (NLSM), $\mathcal{L} = \text{Tr}(\partial_\mu U^+ \partial^\mu U) !$

 $\int d\mu_n \, (\mathrm{Pf}'A)^2 \, \mathrm{Pf}' \Psi(\tilde{\epsilon})$? photons with higher derivatives

New formulas from $Pf'A \rightarrow EFT's$ with massless scalars

 $\int d\mu_n \, (\mathrm{Pf}'A)^2 \, \mathcal{C} ? \, \mathrm{U}(\mathrm{N}) \text{-flavored scalars with two derivatives}?$ The chiral Lagrangian (NLSM), $\mathcal{L} = \mathrm{Tr}(\partial_\mu U^+ \partial^\mu U) !$

 $\int d\mu_n \, (\mathrm{Pf}' A)^2 \, \mathrm{Pf}' \Psi(\tilde{\epsilon}) ? \text{ photons with higher derivatives}$ Born-Infeld theory, $\mathcal{L} = \sqrt{-\det(\eta_{\mu\nu} + F_{\mu\nu})} !$

New formulas from $Pf'A \rightarrow EFT's$ with massless scalars

 $\int d\mu_n \,(\mathrm{Pf}'A)^2 \,\mathcal{C} ? \,\mathrm{U}(\mathrm{N})\text{-flavored scalars with two derivatives}?$ The chiral Lagrangian (NLSM), $\mathcal{L} = \mathrm{Tr}(\partial_\mu U^+ \partial^\mu U) !$

 $\int d\mu_n \, (\mathrm{Pf}'A)^2 \, \mathrm{Pf}'\Psi(\tilde{\epsilon}) ? \text{ photons with higher derivatives}$ Born-Infeld theory, $\mathcal{L} = \sqrt{-\det(\eta_{\mu\nu} + F_{\mu\nu})} !$ Compactify \rightarrow DBI: e.g. $M_n^{\mathrm{scalar-DBI}} = \int d\mu_n \, (\mathrm{Pf}'A)^3 \, \mathrm{Pf}X.$

New formulas from $Pf'A \rightarrow EFT's$ with massless scalars

 $\int d\mu_n \, (Pf'A)^2 \, C ? U(N) \text{-flavored scalars with two derivatives}?$ The chiral Lagrangian (NLSM), $\mathcal{L} = \text{Tr}(\partial_\mu U^+ \partial^\mu U) !$

 $\int d\mu_n \, (\text{Pf}'A)^2 \, \text{Pf}'\Psi(\tilde{\epsilon}) ? \text{ photons with higher derivatives}$ Born-Infeld theory, $\mathcal{L} = \sqrt{-\det(\eta_{\mu\nu} + F_{\mu\nu})} !$ Compactify \rightarrow DBI: e.g. $M_n^{\text{scalar-DBI}} = \int d\mu_n \, (\text{Pf}'A)^3 \, \text{Pf}X.$

The strangest is a special Galileon theory (a scalar theory with many derivatives) [Cheung et al '14,...], $M_n^{sGal} = \int d\mu_n (Pf'A)^4$.

シック 単 (ボッ・ボッ・(中)・(ロ・

$$\label{eq:limit} \begin{split} \text{Immediately: U(1) \& BCJ relations for NLSM, and more:} \\ \text{``EMs} \sim \text{YMs}^{2''} \quad \text{``DBI} \sim \text{NLSM} \times \text{YMs}^{''} \quad \text{``sGal} \sim \text{NLSM}^{2''} \end{split}$$
$\label{eq:mediately: U(1) & BCJ relations for NLSM, and more: $$``EMs ~YMs^2" "DBI ~ NLSM × YMs" "sGal ~ NLSM^2"$$$

What is special about these EFT's: Goldstone bosons with (enhanced) "Adler's zero"! [Cheung et al '14; CHY '14]

 $\label{eq:mediately: U(1) & BCJ relations for NLSM, and more: $$``EMs ~YMs^2" "DBI ~ NLSM × YMs" "sGal ~ NLSM^2"$$$

What is special about these EFT's: Goldstone bosons with (enhanced) "Adler's zero"! [Cheung et al '14; CHY '14]

For NLSM, scalar DBI, sGal $M_n \sim (Pf'A)^2$, $(Pf'A)^3$, $(Pf'A)^4$, with soft emission $p^{\mu} \sim \tau \rightarrow 0$, $M_n \sim \tau^1$, τ^2 , $\tau^3 \rightarrow 0$.

 $\label{eq:mediately: U(1) & BCJ relations for NLSM, and more: $$``EMs ~YMs^2" "DBI ~ NLSM × YMs" "sGal ~ NLSM^2"$$$

What is special about these EFT's: Goldstone bosons with (enhanced) "Adler's zero"! [Cheung et al '14; CHY '14]

For NLSM, scalar DBI, sGal $M_n \sim (\text{Pf}'A)^2$, $(\text{Pf}'A)^3$, $(\text{Pf}'A)^4$, with soft emission $p^{\mu} \sim \tau \rightarrow 0$, $M_n \sim \tau^1, \tau^2, \tau^3 \rightarrow 0$.

CHY makes double-soft emission theorems manifest: reveal the coset structure. [CHY '15; Arkani-Hamed et al. '08; ...]

 $\label{eq:mediately: U(1) & BCJ relations for NLSM, and more: $$``EMs ~YMs^2" "DBI ~ NLSM × YMs" "sGal ~ NLSM^2"$$$

What is special about these EFT's: Goldstone bosons with (enhanced) "Adler's zero"! [Cheung et al '14; CHY '14]

For NLSM, scalar DBI, sGal $M_n \sim (Pf'A)^2$, $(Pf'A)^3$, $(Pf'A)^4$, with soft emission $p^{\mu} \sim \tau \rightarrow 0$, $M_n \sim \tau^1$, τ^2 , $\tau^3 \rightarrow 0$.

CHY makes double-soft emission theorems manifest: reveal the coset structure. [CHY '15; Arkani-Hamed et al. '08; ...]

Hidden simplicity of these special EFT's (∞ vertices): enhanced soft behavior play the role of gauge/diff invariance.

シック 単 (ボッ・ボッ・(中)・(ロ・

Another operation: introducing non-abelian interactions EM \rightarrow Einstein-Yang-Mills, YMs \rightarrow YMs $+ \phi^3$

Another operation: introducing non-abelian interactions EM \rightarrow Einstein-Yang-Mills, YMs \rightarrow YMs $+ \phi^3$

"Parks-Taylor-like" factors are ubiquitous: one factor for each trace of gluons e.g. single-trace and (pure-gluon) double-trace

$$\begin{split} & \mathcal{M}_n^{(1,\ldots,m)}(g;h) = \int d\mu_n \; \mathcal{PT}(1,\ldots,m) \; \mathrm{Pf}[\Psi]_h \; \mathrm{Pf}'\Psi(\tilde{\epsilon}) \,, \\ & \mathcal{M}_n^{(1,\ldots,r)(r+1,\ldots,n)} = \int d\mu_n \; s_{1,\ldots,r} \; \mathcal{PT}(1,\ldots,r) \mathcal{PT}(r+1,\ldots,n) \; \mathrm{Pf}'\Psi_n(\tilde{\epsilon}) \,. \end{split}$$

Another operation: introducing non-abelian interactions EM \rightarrow Einstein-Yang-Mills, YMs \rightarrow YMs $+ \phi^3$

"Parks-Taylor-like" factors are ubiquitous: one factor for each trace of gluons e.g. single-trace and (pure-gluon) double-trace

$$\begin{split} \mathcal{M}_n^{(1,\ldots,m)}(g;h) &= \int d\mu_n \ PT(1,\ldots,m) \ \mathrm{Pf}[\Psi]_h \ \mathrm{Pf}'\Psi(\tilde{\epsilon}) \,, \\ \mathcal{M}_n^{(1,\ldots,r)(r+1,\ldots,n)} &= \int d\mu_n \ s_{1,\ldots,r} \ PT(1,\ldots,r) PT(r+1,\ldots,n) \ \mathrm{Pf}'\Psi_n(\tilde{\epsilon}) \,. \end{split}$$

Repeating the operation: compact formula for all multi-trace gluon-graviton amps in EYM (or YMs + ϕ^3).

Another operation: introducing non-abelian interactions EM \rightarrow Einstein-Yang-Mills, YMs \rightarrow YMs $+ \phi^3$

"Parks-Taylor-like" factors are ubiquitous: one factor for each trace of gluons e.g. single-trace and (pure-gluon) double-trace

$$\begin{split} \mathcal{M}_n^{(1,\ldots,m)}(g;h) &= \int d\mu_n \ PT(1,\ldots,m) \ \mathrm{Pf}[\Psi]_h \ \mathrm{Pf}'\Psi(\tilde{\epsilon}) \,, \\ \mathcal{M}_n^{(1,\ldots,r)(r+1,\ldots,n)} &= \int d\mu_n \ s_{1,\ldots,r} \ PT(1,\ldots,r) PT(r+1,\ldots,n) \ \mathrm{Pf}'\Psi_n(\tilde{\epsilon}) \,. \end{split}$$

Repeating the operation: compact formula for all multi-trace gluon-graviton amps in EYM (or YMs + ϕ^3).

New ambitwistor-string models [Geyer et al '15]. String origin?

A landscape of massless theories

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ● ○ ○ ○ ○

Kawai-Lewellen-Tye relations: closed-string $\sim \sum$ open-string^2

Kawai-Lewellen-Tye relations: closed-string $\sim \sum$ open-string² $\alpha' \rightarrow 0$: gravity amp $\sim \sum$ YM partial amps² [Bern et al '98]

Kawai-Lewellen-Tye relations: closed-string $\sim \sum$ open-string² $\alpha' \rightarrow 0$: gravity amp $\sim \sum$ YM partial amps² [Bern et al '98]

Rewrite CHY formula (with two half-integrands), in terms of two (n-3)!-dim vectors **L**, **R** and a diagonal matrix **J**

$$M_n = \int d\mu_n \ L \ R \ = \ \sum_{I=1}^{(n-3)!} \ \frac{L_I \ R_I}{J_I} = \mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{R} \,,$$

<ロト 4 目 ト 4 三 ト 4 三 ト 一 三 一 の Q (や)</p>

Kawai-Lewellen-Tye relations: closed-string $\sim \sum$ open-string² $\alpha' \rightarrow 0$: gravity amp $\sim \sum$ YM partial amps² [Bern et al '98]

Rewrite CHY formula (with two half-integrands), in terms of two (n-3)!-dim vectors **L**, **R** and a diagonal matrix **J**

$$M_n = \int d\mu_n \ L \ R \ = \ \sum_{I=1}^{(n-3)!} \ \frac{L_I \ R_I}{J_I} = \mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{R} \,,$$

Remarkable role of PT's: provide a new (n-3)!-dim basis

(n-3)!-dim matrix \mathbf{E} : $E_I^{\alpha} = PT[\alpha]_I$, for $\alpha \in S_{n-3}$.

Double-partial amps form another (n-3)!-dim matrix **m**:

Double-partial amps form another (n-3)!-dim matrix **m**:

$$\mathbf{m} = \mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \ \Rightarrow \ \mathbf{J}^{-1} = \mathbf{E}^{-1} \cdot \mathbf{m} \cdot \mathbf{E}^{-1}$$
.

Double-partial amps form another (n-3)!-dim matrix **m**:

$$\mathbf{m} = \mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \ \Rightarrow \ \mathbf{J}^{-1} = \mathbf{E}^{-1} \cdot \mathbf{m} \cdot \mathbf{E}^{-1}$$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ()

Key: all matrices are invertible. Now insert it back:

Double-partial amps form another (n-3)!-dim matrix **m**:

$$\mathbf{m} = \mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \ \Rightarrow \ \mathbf{J}^{-1} = \mathbf{E}^{-1} \cdot \mathbf{m} \cdot \mathbf{E}^{-1}$$

Key: all matrices are invertible. Now insert it back:

$$M_n = \mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{R} = \mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{J} \cdot \mathbf{J}^{-1} \cdot \mathbf{R}$$

= $\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \cdot \mathbf{m}^{-1} \cdot \mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{R}$
= $\sum_{\alpha, \beta \in S_{n-3}} M_n^L[\alpha] \ m^{-1}[\alpha|\beta] \ M_n^R[\beta]$,

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ()

Double-partial amps form another (n-3)!-dim matrix **m**:

$$\mathbf{m} = \mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \ \Rightarrow \ \mathbf{J}^{-1} = \mathbf{E}^{-1} \cdot \mathbf{m} \cdot \mathbf{E}^{-1}$$

Key: all matrices are invertible. Now insert it back:

$$M_n = \mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{R} = \mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{J} \cdot \mathbf{J}^{-1} \cdot \mathbf{R}$$

= $\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \cdot \mathbf{m}^{-1} \cdot \mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{R}$
= $\sum_{\alpha, \beta \in S_{n-3}} M_n^L[\alpha] \ m^{-1}[\alpha|\beta] \ M_n^R[\beta],$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

exactly the KLT relations! (now also for DBI, sGal etc.)

Double-partial amps form another (n-3)!-dim matrix **m**:

$$\mathbf{m} = \mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \ \Rightarrow \ \mathbf{J}^{-1} = \mathbf{E}^{-1} \cdot \mathbf{m} \cdot \mathbf{E}^{-1}$$

Key: all matrices are invertible. Now insert it back:

$$M_n = \mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{R} = \mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{J} \cdot \mathbf{J}^{-1} \cdot \mathbf{R}$$

= $\mathbf{L} \cdot \mathbf{J}^{-1} \cdot \mathbf{E} \cdot \mathbf{m}^{-1} \cdot \mathbf{E} \cdot \mathbf{J}^{-1} \cdot \mathbf{R}$
= $\sum_{\alpha, \beta \in S_{n-3}} M_n^L[\alpha] \ m^{-1}[\alpha|\beta] \ M_n^R[\beta],$

exactly the KLT relations! (now also for DBI, sGal etc.)

Applying it to partial amps \rightarrow BCJ as basis expansion: $M_n[\pi] = \sum_{\alpha,\beta \in S_{n-3}} m[\pi|\alpha] m^{-1}[\alpha|\beta] M_n[\beta]$, for $\pi \in S_n$.

・ロト・4日ト・4日ト・4日ト 日 900

Ambitwistor string @ $g = 1 \rightarrow$ one-loop formula [Adamo et al '14]

Ambitwistor string @ $g = 1 \rightarrow$ one-loop formula [Adamo et al '14] $q \rightarrow 0$: one-loop scattering eqs on a sphere [Geyer et al '15]

$$\mathcal{E}_{a} = \sum_{b \neq a} \frac{k_{a} \cdot k_{b}}{\sigma_{a} - \sigma_{b}} + \frac{k_{a} \cdot \ell}{\sigma_{a}}, \quad \text{for } a = 1, \dots, n.$$

Ambitwistor string @ $g = 1 \rightarrow$ one-loop formula [Adamo et al '14] $q \rightarrow 0$: one-loop scattering eqs on a sphere [Geyer et al '15]

$$\mathcal{E}_{a} = \sum_{b \neq a} \frac{k_{a} \cdot k_{b}}{\sigma_{a} - \sigma_{b}} + \frac{k_{a} \cdot \ell}{\sigma_{a}}, \quad \text{for } a = 1, \dots, n.$$

Imposing $\delta(\mathcal{E})$'s gives formula for one-loop amplitudes

$$M_n^{(1)} = \int d^D \ell \frac{1}{\ell^2} \int d\mu_n^{(1)} \mathcal{I}_n(\{\sigma, k, \epsilon\}; \ell),$$

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < の < @</p>

Ambitwistor string @ $g = 1 \rightarrow$ one-loop formula [Adamo et al '14] $q \rightarrow 0$: one-loop scattering eqs on a sphere [Geyer et al '15]

$$\mathcal{E}_{a} = \sum_{b \neq a} \frac{k_{a} \cdot k_{b}}{\sigma_{a} - \sigma_{b}} + \frac{k_{a} \cdot \ell}{\sigma_{a}}, \quad \text{for } a = 1, \dots, n.$$

Imposing $\delta(\mathcal{E})$'s gives formula for one-loop amplitudes

$$M_n^{(1)} = \int d^D \ell \frac{1}{\ell^2} \int d\mu_n^{(1)} \mathcal{I}_n(\{\sigma, k, \epsilon\}; \ell),$$

seems to give "wrong" integrands: propagators of the form $1/((\ell + P)^2 - \ell^2)$, but the difference integrates to zero.

Ambitwistor string @ $g = 1 \rightarrow$ one-loop formula [Adamo et al '14] $q \rightarrow 0$: one-loop scattering eqs on a sphere [Geyer et al '15]

$$\left| \mathcal{E}_{a} = \sum_{b \neq a} \frac{k_{a} \cdot k_{b}}{\sigma_{a} - \sigma_{b}} + \frac{k_{a} \cdot \ell}{\sigma_{a}}, \quad \text{for } a = 1, \dots, n. \right|$$

Imposing $\delta(\mathcal{E})$'s gives formula for one-loop amplitudes

$$M_n^{(1)} = \int d^D \ell \frac{1}{\ell^2} \int d\mu_n^{(1)} \mathcal{I}_n(\{\sigma, k, \epsilon\}; \ell),$$

seems to give "wrong" integrands: propagators of the form $1/((\ell + P)^2 - \ell^2)$, but the difference integrates to zero.

New rep of loop integrands: a rational function with no ambiguities (treat all propagators equally) [c.f. Baadsgaard et al '15]

・ロト・西ト・ヨト・ヨー つんぐ

One-loop amp as forward limit of tree amp in higher dim:

$$M_n^{\rm 1-loop} ~\sim~ \int \frac{d^D \ell}{\ell^2} \sum_{I_+=I_-,\epsilon_+=(\epsilon_-)^*} M_{n+2}^{\rm tree}(\;\{(k_i;0)\},\;\;\pm(\ell,|\ell|)\;)\,,$$

with divergences regulated by CHY formula of trees.

One-loop amp as forward limit of tree amp in higher dim:

$$M_n^{\rm 1-loop} ~\sim~ \int \frac{d^D \ell}{\ell^2} \sum_{I_+=I_-,\epsilon_+=(\epsilon_-)^*} M_{n+2}^{\rm tree}(\;\{(k_i;0)\},\;\;\pm(\ell,|\ell|)\;)\,,$$

with divergences regulated by CHY formula of trees.

Color-sum gives one-loop color structures \rightarrow one-loop PT's $\operatorname{PT}_{n}^{(1)}[1, 2, \dots, n] := \sum_{i=1}^{n} \operatorname{PT}_{n+2}[1, \dots, i, +, -, i+1, \dots, n].$

One-loop amp as forward limit of tree amp in higher dim:

$$M_n^{\rm 1-loop} ~\sim~ \int \frac{d^D \ell}{\ell^2} \sum_{I_+=I_-, \epsilon_+=(\epsilon_-)^*} M_{n+2}^{\rm tree}(\;\{(k_i;0)\},\;\;\pm(\ell,|\ell|)\;)\,,$$

with divergences regulated by CHY formula of trees.

Color-sum gives one-loop color structures \rightarrow one-loop PT's $\operatorname{PT}_{n}^{(1)}[1, 2, \dots, n] := \sum_{i=1}^{n} \operatorname{PT}_{n+2}[1, \dots, i, +, -, i+1, \dots, n].$

One-loop "Pfaffians" from forward-limit of tree ones, e.g.

$$\mathrm{Pf}_{\mathbf{s}}^{(1)} = \frac{1}{\sigma_{+,-}^2} \mathrm{Pf} \Psi_n(\ell), \quad \mathrm{Pf}_{\mathbf{g}}^{(1)} = \sum_{\epsilon_+ = (\epsilon_-)^*} \mathrm{Pf}' \Psi_{n+2}(\ell), \quad \mathrm{Pf}_{\mathbf{f}}^{(1)} = \dots$$

< ロト < 団ト < 三ト < 三ト < 三 ・ つへぐ

・ロト・西ト・ヨト・ヨー つんぐ

Formulas for ϕ^3 , Yang-Mills and gravity at one loop

$$\mathcal{I}_n^{\phi^3} = (\mathrm{PT}_n^{(1)})^2, \quad \mathcal{I}_n^{\mathrm{YM}} = \mathrm{PT}_n^{(1)} \operatorname{Pf}_{\mathbf{g}}^{(1)}, \quad \mathcal{I}_n^{\mathrm{GR}} = (\mathrm{Pf}_{\mathbf{g}}^{(1)})^2 - c_d (\mathrm{Pf}_{\mathbf{f}}^{(1)})^2,$$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ()

Formulas for ϕ^3 , Yang-Mills and gravity at one loop $\mathcal{I}_n^{\phi^3} = (\mathrm{PT}_n^{(1)})^2$, $\mathcal{I}_n^{\mathrm{YM}} = \mathrm{PT}_n^{(1)} \mathrm{Pf}_{\mathbf{g}}^{(1)}$, $\mathcal{I}_n^{\mathrm{GR}} = (\mathrm{Pf}_{\mathbf{g}}^{(1)})^2 - c_d (\mathrm{Pf}_{\mathbf{f}}^{(1)})^2$,

Including fermions to give one-loop SYM and SUGRA:

$$\mathcal{I}_n^{\mathrm{SYM}} = \mathrm{PT}_n^{(1)} \left(\mathrm{Pf}_{\mathbf{g}}^{(1)} - c_d \mathrm{Pf}_{\mathbf{f}}^{(1)} \right), \quad \mathcal{I}_n^{\mathrm{SUGRA}} = (\mathrm{Pf}_{\mathbf{g}}^{(1)} - c_d \mathrm{Pf}_{\mathbf{f}}^{(1)})^2.$$

Formulas for ϕ^3 , Yang-Mills and gravity at one loop $\mathcal{I}_n^{\phi^3} = (\mathrm{PT}_n^{(1)})^2$, $\mathcal{I}_n^{\mathrm{YM}} = \mathrm{PT}_n^{(1)} \mathrm{Pf}_{\mathbf{g}}^{(1)}$, $\mathcal{I}_n^{\mathrm{GR}} = (\mathrm{Pf}_{\mathbf{g}}^{(1)})^2 - c_d (\mathrm{Pf}_{\mathbf{f}}^{(1)})^2$,

Including fermions to give one-loop SYM and SUGRA:

$$\mathcal{I}_n^{\mathrm{SYM}} = \mathrm{PT}_n^{(1)} \left(\mathrm{Pf}_{\mathbf{g}}^{(1)} - c_d \mathrm{Pf}_{\mathbf{f}}^{(1)} \right), \quad \mathcal{I}_n^{\mathrm{SUGRA}} = (\mathrm{Pf}_{\mathbf{g}}^{(1)} - c_d \mathrm{Pf}_{\mathbf{f}}^{(1)})^2.$$

Gauge invariance, soft theorems, unitarity cuts, SUSY ... natural one-loop KLT and BCJ relations at integrand level: e.g.

SUGRA =
$$\sum_{\alpha,\beta=1}^{(n-1)!-2(n-2)!}$$
 SYM[α] (ϕ_3)⁻¹[$\alpha|\beta$] SYM[α].

Conclusion

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで
Parke-Taylor formula: the beginning of the ongoing search for new structures of amplitudes in QFT's

Parke-Taylor formula: the beginning of the ongoing search for new structures of amplitudes in QFT's

From Witten's twistor string to CHY formulation: "connected" formulas that manifest deep structures and properties

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Parke-Taylor formula: the beginning of the ongoing search for new structures of amplitudes in QFT's

From Witten's twistor string to CHY formulation: "connected" formulas that manifest deep structures and properties

A large class of (massless) QFT with a web of connections; (not covered) ambi-twistor strings, fermions, massive cases...

Parke-Taylor formula: the beginning of the ongoing search for new structures of amplitudes in QFT's

From Witten's twistor string to CHY formulation: "connected" formulas that manifest deep structures and properties

A large class of (massless) QFT with a web of connections; (not covered) ambi-twistor strings, fermions, massive cases...

Loop formulas: a new paradigm for studying loop integrands?

Parke-Taylor formula: the beginning of the ongoing search for new structures of amplitudes in QFT's

From Witten's twistor string to CHY formulation: "connected" formulas that manifest deep structures and properties

A large class of (massless) QFT with a web of connections; (not covered) ambi-twistor strings, fermions, massive cases...

Loop formulas: a new paradigm for studying loop integrands?

Most importantly: what is the origin of this formulation? Relations/applications to string theory & quantum gravity?

Thank you for your attention!

(ロト (個) (主) (主) (主) のへの