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• Tree amplitudes for Yang-Mills and massless ϕ3 theory from the
Scattering Equations in any dimension

• Möbius invariance

• Polynomial form of the Scattering Equations

• The General Solution and Elimination Theory



Tree Amplitudes

A(k1, k2, . . . , kN) =

∮
O
ΨN(z , k, ϵ)

∏
a∈A

′ 1

fa(z , k)

∏
a∈A

dza
(za − za+1)2

/
dω,

O encircles the zeros of fa(z , k),

fa(z , k) ≡
∑
b∈A
b ̸=a

ka · kb
za − zb

= 0 The Scattering Equations

(Cachazo,He,Yuan 2013) . . . (Fairlie,Roberts 1972)

k2a= 0,
∑
a∈A

kµa = 0, A = {1, 2, . . .N.}

Motivated by twistor string theory, DG proved A(k1, k2, . . . kn) are
ϕ3 and Yang-Mills gluon field theory tree amplitudes, as
conjectured by CHY.



Scattering Equations fa(z , k) = 0, k2a = 0 za → αza+β
γza+δ ,

U(z , k) ≡
∏
a<b

(za − zb)
−ka·kb is Möbius invariant,

∂U

∂za
= −faU, fa(z , k) =

∑
b∈A
b ̸=a

ka · kb
za − zb

,

implying fa(z) → fa(z)
(γza + δ)2

(αδ − βγ)
.

The infinitesimal transformations δza = ϵ1+ϵ2za + ϵ3z
2
a ,

U(z + δz)∼ U(z) +
∂U

∂za
δza, so the fa satisfy the three relations∑

a∈A
fa= 0,

∑
a∈A

zafa = 0,
∑
a∈A

z2a fa = 0.

There are N − 3 independent Scattering Equations fa = 0.

Fixing z1 = ∞, z2 = 1, zN = 0, there are N − 3 variables,

and generally (N − 3)! solutions za(k).



Total Amplitudes

ΨN =
∏

a∈A(za − za+1)× Pfaffian for Yang-Mills
For example, N = 4,

Aabcd(k1, k2, k3, k4) = g2
(
fabe fecd

ns
s

+ fbce fead
nt
t
+ fcae febd

nu
u

)
= g2

((
tr(TaTbTcTd) + tr(TdTcTbTa)

)
A(1234)

+
(
tr(TaTcTdTb) + tr(TbTdTcTa)

)
A(1342)

+
(
tr(TaTdTbTc) + tr(TcTbTdTa)

)
A(1423)

)
,

ns =
(
ϵ1 · ϵ2(k1−k2)α + 2ϵ1 · k2ϵ2α − 2ϵ2 · k1ϵ1α

)
×
(
ϵ3 · ϵ4(k3 − k4)

α + 2ϵ3 · k4ϵα4 − 2ϵ4 · k3ϵα3
)

+
(
ϵ1 · ϵ3ϵ2·ϵ4 − ϵ1 · ϵ4ϵ2 · ϵ3

)
s,

A(1234) =
ns
s

+
nt
t
. s = (k1 + k2)

2, t = (k2 + k3)
2, u = (k1 + k3)

2

A(k1, k2, k3, k4) =A(1234).



A Single Scalar Field, Massless ϕ3

A single massless scalar field, ΨN = 1.

Aϕ(k1, k2, . . . , kN) =

∮
O

∏
a∈A

′ 1

fa(z , k)

∏
a∈A

dza
(za − za+1)2

/
dω

Aϕ(k1, k2, k3, k4) =
1

s
+
1

t
,

Atotal = Aϕ(k1, k2, k3, k4)+Aϕ(k1, k3, k2, k4) +Aϕ(k1, k4, k2, k3)

= 2

(
1

s
+

1

t
+

1

u

)



Rewriting the Scattering Equations as Polynomial Equations
whose degrees are as small as possible:

For a subset U ⊂ A,

kU ≡
∑
a∈U

ka, zU ≡
∏
b∈U

zb,

then the Scattering Equations∑
b∈A
b ̸=a

ka · kb
za − zb

= 0

are equivalent to the homogeneous polynomial equations∑
U⊂A
|U|=m

k2UzU = 0, 2 ≤ m ≤ N − 2,

where the sum is over all N!
m!(N−m)! subsets U ⊂ A with m elements.



Proof of the Polynomial Form of the Scattering Equations

pµ(z) ≡
∑
a∈A

kµa
z − za

,
∑
a

kµa = 0, k2a = 0,

p2(z) =
∑
a,b

ka · kb
(z − za)(z − zb)

=
1

2

∑
a

1

z − za

∑
b ̸=a

ka · kb
(za − zb)

= 0

2p2(z)
∏
c∈A

(z − zc) =
∑
a,b∈A

ka · kb
∏
c∈A
c ̸=a,b

(z − zc)

=
N−2∑
m=0

zN−m−2
∑
U⊂A
|U|=m

zU
∑
S⊂U
|S|=2

k2S = 0

where U = {b ∈ A : b /∈ U}. Using
∑

S⊂U
|S|=2

k2S = k2
U
= k2U , then

h̃m ≡
∑

U⊂A
|U|=m

k2UzU = 0.



h̃m = 0 are the Unique Möbius Invariant Polynomial Equations

L−1 denotes the generator of translations,

L−1 = −
∑
a∈A

∂

∂za
, L−1 h̃m = −(N −m − 1)h̃m−1 ,

L1, special conformal transformations

L1 = −
∑
a∈A

z2a
∂

∂za
+ΣA

1 , L1 h̃m = (m − 1)h̃m+1, ΣA
1 ≡

∑
a∈A

za.

L0, scale transformations

L0 = −
∑
a∈A

za
∂

∂za
+

N

2
, L0 h̃m = ( 1

2
N −m)h̃m ,

so that [L1, L−1] = 2L0, [L0, L±1] = ∓L±1.

The h̃m, 2 ≤ m ≤ N − 2, form an (N − 3)-dimensional multiplet of
the Möbius algebra, i.e. a representation of ‘Möbius spin’ 1

2
N − 2.

The equations h̃m(z1, . . . , zn) =
∑

U⊂A
|U|=m

k2UzU = 0 determine a

discrete set of points (up to Möbius invariance).



z1 → ∞, zN−1 fixed, zN → 0,

Amplitudes in terms of Polynomial Constraints

AN =

∮
O
ΨN(z , k)

N−3∏
m=1

1

hm(z , k)

∏
2≤a<b≤N−1

(za − zb)
N−2∏
a=2

zadza+1

(za − za+1)2
.

hm = lim
z1→∞

h̃m+1

z1
=

1

m!

∑
a1,a2,...,am ̸=1,N

ai uneq.

k21a1...amza1za2 . . . zam , 1 ≤ m ≤ N − 3,

The N − 3 polynomial equations hm = 0, of order m,
linear in each za individually,
are equivalent to the Scattering Equations fa =

∑
b

ka·kb
za−zb

= 0.

By Bézout’s theorem, they determine (N − 3)! solutions for the
(N − 3) ratios z2/zN−1, z3/zN−1, . . . , zN−2/zN−1.



k2i = 0, k212...a = (k1 + k2 + . . . ka)
2 = 2k1 · k2 + 2k1 · k3 + . . .,

The Scattering Equations:

N = 4 h1 = k212 z2 + k213 z3 = 0,

N = 5 h1 = k212 z2 + k213 z3 + k214 z4 = 0,

h2 = k2123 z2 z3 + k2124 z2 z4 + k2134 z3 z4 = 0,

N = 6 h1 = k212 z2 + k213 z3 + k214 z4 + k215 z5 = 0,

h2 = k2123 z2 z3 + k2124 z2 z4 + k2125 z2 z5

+ k2134 z3 z4 + k2135 z3 z5 + k2145 z4 z5 = 0,

h3 = k21234 z2 z3 z4 + k21235 z2 z3 z5 + k21345 z3 z4 z5 = 0.

N h1, h2, . . . , hN−3 = 0, z2, z3, . . . , zN−2, zN−1.



Amplitudes as Algebraic Objects attached to a Variety

AN =
∑

solutions

ΨN(z , k)

J(z , k)

∏
2≤a<b≤N−1

(za − zb)
N−2∏
a=2

zadza
(za − za+1)2

J(z , k) = det

[
∂hm
∂za

]
1≤m≤N−3
2≤a≤N−2

.

The integrals are somewhat symbolic, just sums over the solutions
of the Scattering Equations, and hence rational functions of the
Mandelstam variables.

For the ring of polynomials in CPN−3(z2, . . . , zN−2), consider the
ideal associated with the h1, . . . , hN−3 polynomials. The equations
hm = 0 define a projective variety, which is a set of (N − 3)! points.

The goal is to understand the amplitudes in terms of natural
algebraic objects attached to the variety in CPN−3 described by
the Scattering Equations.



To solve hm(z , k) = 0, 1 ≤ m ≤ N − 3,

we will eliminate za, 2 ≤ a ≤ N − 3,

in terms of u = zN−2 and v = zN−1, to give

a single variable polynomial equation of order (N − 3)! in u/v ,
whose roots determine the solutions of the Scattering Equations.

Linear equations determine z2, . . . , zN−3 from u/v .



Solving the Scattering Equations

N = 4

h1 = k212z2 + k213z3 = 0, z2/z3 = −k213/k
2
12 = −k1 · k3/k1 · k2.

N = 5 σab... ≡ (k1 + ka + kb + . . .)2

z2 = x , z3 = u, z4 = v
h1 = σ2x + σ3u + σ4v = 0,
h2 = σ23xu + σ24xv + σ34uv = 0,

eliminating x yields a quadratic equation for u/v .
This can be written as

0 =

∣∣∣∣σ3u + σ4v σ2
σ34uv σ23u + σ24v

∣∣∣∣ = ∣∣∣∣h1 ∂h1
∂x

h2
∂h2
∂x

∣∣∣∣ = ∆5,

which is independent of x .



Another way to establish that ∆5 is independent of x

Let ∆5 = 0 be the condition on u, v such that h1 = 0, h2 = 0 have
a common solution for some x .

If ∆5 =

∣∣∣∣h1 ∂h1
∂x

h2
∂h2
∂x

∣∣∣∣ = 0 for some x = x0, then there exists a solution

ξ such that

h1(x0 + ξ, u, v) = h1(x0, u, v) + ξ
∂h1
∂x

(x0, u, v) = 0,

h2(x0 + ξ, u, v) = h2(x0, u, v) + ξ
∂h2
∂x

(x0, u, v) = 0,

since hm is linear in each of the variables x , u, v separately.

Then ∆5 is independent of x .



N = 6 write (x , y , u, v) = (z2, z3, z4, z5)

h1 = σ2x + σ3y + σ4u + σ5v = 0,
h2 = σ23xy + σ24xu + σ34yu + σ25xv + σ35yv + σ45uv = 0,
h3 = σ234xyu + σ235xyv + σ245xuv + σ345yuv = 0,

eliminating x , y yields a sextic equation for u/v .
This can be written

∆6 =

∣∣∣∣∣∣∣∣∣∣∣∣

h1 hy1 hx1 hxy1 0 0
h2 hy2 hx2 hxy2 0 0
h3 hy3 hx3 hxy3 0 0
0 0 h1 hy1 hx1 hxy1
0 0 h2 hy2 hx2 hxy2
0 0 h3 hy3 hx3 hxy3

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

hxm =
∂hm
∂x

, hxym =
∂2hm
∂x∂y

, etc. where
∂∆6

∂x
=

∂∆6

∂y
= 0



Elimination theory developed by Sylvester and Cayley

Supplement h1 = h2 = h3 = 0 with xh1 = xh2 = xh3 = 0,
providing 6 linear relations between 1, x , y , xy , x2, x2y ,

hm = am + bmy + cmx + dmxy = 0,

xhm = amx + bmxy + cmx
2 + dmx

2y = 0,

The condition of their consistency is∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 c1 d1 0 0
a2 b2 c2 d2 0 0
a3 b3 c3 c3 0 0
0 0 a1 b1 c1 d1
0 0 a2 b2 c2 d2
0 0 a3 b3 c3 d3

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,



Elimination theory developed by Sylvester and Cayley

Supplement h1 = h2 = h3 = 0 with xh1 = xh2 = xh3 = 0,
providing 6 linear relations between 1, x , y , xy , x2, x2y ,

hm = am + bmy + cmx + dmxy = 0,

xhm = amx + bmxy + cmx
2 + dmx

2y = 0,

The condition of their consistency is equal to

∆6 =

∣∣∣∣∣∣∣∣∣∣∣∣

h1 hy1 hx1 hxy1 0 0
h2 hy2 hx2 hxy2 0 0
h3 hy3 hx3 hxy3 0 0
0 0 h1 hy1 hx1 hxy1
0 0 h2 hy2 hx2 hxy2
0 0 h3 hy3 hx3 hxy3

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 c1 d1 0 0
a2 b2 c2 d2 0 0
a3 b3 c3 c3 0 0
0 0 a1 b1 c1 d1
0 0 a2 b2 c2 d2
0 0 a3 b3 c3 d3

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

since the left determinant is independent of x , y .



As before, the independence of ∆6 from x , y can be established by
noting that ∆6 = 0 is also the condition for the existence of ξ, η
such that

hm(x + ξ, y + η, u, v) = hm + ξhxm + ηhym + ηξhxym = 0,

ξhm(x + ξ, y + η, u, v) = ξhm + ξ2hxm + ξηhym + ξ2ηhxym = 0.

So ∆6 = 0 provides the condition on u, v for a common solution
h1 = h2 = h3 = 0 independent of x , y .



h1 hy1 hx1 hxy1 0 0
h2 hy2 hx2 hxy2 0 0
h3 hy3 hx3 hxy3 0 0
0 0 h1 hy1 hx1 hxy1
0 0 h2 hy2 hx2 hxy2
0 0 h3 hy3 hx3 hxy3





1
η
ξ
ηξ
ξ2

ξ2η

 = 0.



Then compute x , y in terms of u, v from linear relations

Use the null vector to find
h2 hy2 hxy2 0 0
h3 hy3 hxy3 0 0
0 0 hy1 hx1 hxy1
0 0 hy2 hx2 hxy2
0 0 hy3 hx3 hxy3




1
η
ηξ
ξ2

ξ2η

 = −


hx2
hx3
h1
h2
h3

 ξ,

then

η =
ξη

ξ
= −

∣∣∣∣∣∣∣∣∣∣
h2 hy2 hxy2 0 0
h3 hy3 hxy3 0 0
0 0 hy1 hx1 hxy1
0 0 hy2 hx2 hxy2
0 0 hy3 hx3 hxy3

∣∣∣∣∣∣∣∣∣∣

−1 ∣∣∣∣∣∣∣∣∣∣
h2 hy2 0 0 0
h3 hy3 0 0 0
0 0 h1 hx1 hxy1
0 0 h2 hx2 hxy2
0 0 h3 h3

x hxy3

∣∣∣∣∣∣∣∣∣∣
.

For η = 0, y satisfies hm(x , y , u, v) = 0 for some x .



So compute y in terms of u, v from the linear relation

η =
ξη

ξ
= −

∣∣∣∣∣∣
hy1 hx1 hxy1
hy2 hx2 hxy2
hy3 hx3 hxy3

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣

h1 hx1 hxy1
h2 hx2 hxy2
h3 h3

x hxy3

∣∣∣∣∣∣ = 0.

Linear in y , independent of x .

Notation:

h ≡

h1
h2
h3

 ,
∣∣h hx hxy

∣∣ = 0.



N=7

Writing (z2, z3, z4, z5, z6) = (x , y , z , u, v) we will eliminate x , y , z
to obtain a single variable equation for u/v of order (N − 3)! = 24,
using the 24 equations

hm = yhm = xhm = xyhm = x2hm = x2yhm = 0, 1 ≤ m ≤ 4

providing linear relations between the 24 monomials

xpyqz r , 0 ≤ p ≤ 3, 0 ≤ q ≤ 2, 0 ≤ r ≤ 1,

with

hm = am + bmz + cmy + dmx + emyz + fmxz + gmxy + jmxyz .



N=7

Writing (z2, z3, z4, z5, z6) = (x , y , z , u, v) we will eliminate x , y , z
to obtain a single variable equation for u/v of order (N − 3)! = 24,
using the 24 equations

hm = yhm = xhm = xyhm = x2hm = x2yhm = 0, 1 ≤ m ≤ 4

C2 = {1, x , y , xy , x2, x2y},

providing linear relations between the 24 monomials

C3 =
{
xpyqz r , 0 ≤ p ≤ 3, 0 ≤ q ≤ 2, 0 ≤ r ≤ 1

}
,

with

hm = am + bmz + cmy + dmx + emyz + fmxz + gmxy + jmxyz ,

B3 = xmynzp, m, n, p = 0, 1.



∆7 = |M7| = 0 =∣∣∣∣∣∣∣∣∣∣∣∣

h hz hy hyz 0 0 hx hxz hxy hxyz 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 h hz hy hyz 0 0 hx hxz hxy hxyz 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 h hz hy hyz 0 0 hx hxz hxy hxyz 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 h hz hy hyz 0 0 hx hxz hxy hxyz 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 h hz hy hyz 0 0 hx hxz hxy hxyz 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 h hz hy hyz 0 0 hx hxz hxy hxyz

∣∣∣∣∣∣∣∣∣∣∣∣
where hxyz

m = ∂x∂y∂zhm, h =


h1
h2
h3
h4

 .

∆7 vanishes for hm = 0, and is independent of x , y , z .

The rows of M7 are labeled by α ∈ m,C2, the columns by β ∈ C3.
The non-zero entries are Mmα,β = hγ

m if β = αγ, γ ∈ B3.
degMmα,β = m + degα+ deg β,
deg∆7 =

∑
m,C2

(m + degα) +
∑

C4
deg β = 24.

The coefficient of v 24 in ∆7 is

h6
1(h

z
2)

2(hy
2)

2(hx
2)

2(hyz
3 )2(hzx

3 )2(hxy
3 )2(hxyz

4 )6 = σ6
6σ

2
26σ

2
36σ

2
46σ

2
236σ

2
246σ

2
346σ

2
2346.



General N

(N − 3)! relations hmCN−5 = 0 (labeling rows m,α)
between the (N − 3)! variables CN−4 (labeling columns β).

CM =
{ M∏

a=1

xma
a : 0 ≤ ma ≤ M − a+ 1, 1 ≤ a ≤ M

}
BM =

{ M∏
a=1

xma
a : 0 ≤ ma ≤ 1, 1 ≤ a ≤ M

}
Mmα,β = hγm if β = αγ, γ ∈ BN−4,

= 0 if β /∈ αBN−4.

∆N = detM = 0.

degMmα,β = m + degα+ deg β,

deg∆N =
N−3∑
m=1

∑
α∈CN−5

(m + degα)−
∑

β∈CN−4

deg β = (N − 3)!



Since no element of M is more than linear in v , the term v (N−3)!

in detM must come from the product of linear factors u0v1.

The element Mmα,β is of degree one when m − deg γ = 1.

The coefficient of v (N−3)! contains∏
γ∈BN−4

[
hγm

]nγ ,
where m = deg γ + 1, nγ = (N − 4− deg γ)!(deg γ)!



Summary
The scattering equations can be reformulated as polynomial
equations that are linear in the variables za separately. Using
Möbius invariance, the polynomials are reduced to
(N − 3) equations in (N − 3) variables.

Facilitated by this linearity, elimination theory is used to construct
a polynomial equation of degree (N − 3)! for the single variable
zN−2/zN−1, determining the (N-3)! solutions expected from
Bézout’s theorem. Linear relations relate the remaining variables to
the single variable.

For the (N − 3) equations hm(z2, . . . , zN−2; k1, . . . kN−1) = 0, the
(N − 3)! solutions za(k) in CPN−3 define a set of points forming
the variety of the ideal < h1, h2, . . . hN−3 > . The goal is to
understand the N-point scattering amplitudes, which appear as
rational functions of the kinematic invariants, as natural algebraic
objects attached to this variety.


