General Solution of the Scattering Equations

Louise Dolan
University of North Carolina at Chapel Hill

MHV30 at Fermilab, March 2016

(work with Peter Goddard, IAS Princeton)
1511.09441 [hep-th], General Solution of the Scattering Equations
1402.7374 [hep-th], The Polynomial Form of the Scattering Equations
1311.5200 [hep-th], Proof of the Formula of Cachazo, He and Yuan for Yang-Mills Tree Amplitudes in Arbitrary Dimension

Freddy Cachazo, Song He, and Ellis Yuan (CHY)
1309.0885 [hep-th],

Scattering of Massless Particles: Scalars, Gluons and Gravitons
1307.2199 [hep-th],

Scattering of Massless Particles in Arbitrary Dimensions
1306.6575 [hep-th],

Scattering Equations and KLT Orthogonality

Carlos Cardona and Chrysostomos Kalousios
1511.05915 [hep-th]

Elimination and Recursions in the Scattering Equations

Outline

- Tree amplitudes for Yang-Mills and massless ϕ^{3} theory from the Scattering Equations in any dimension
- Möbius invariance
- Polynomial form of the Scattering Equations
- The General Solution and Elimination Theory

Tree Amplitudes

$$
\begin{aligned}
& \mathcal{A}\left(k_{1}, k_{2}, \ldots, k_{N}\right)=\oint_{\mathcal{O}} \Psi_{N}(z, k, \epsilon) \prod_{a \in A}^{\prime} \frac{1}{f_{a}(z, k)} \prod_{a \in A} \frac{d z_{a}}{\left(z_{a}-z_{a+1}\right)^{2}} / d \omega \\
& \mathcal{O} \text { encircles the zeros of } f_{a}(z, k)
\end{aligned}
$$

$$
\begin{aligned}
f_{a}(z, k) & \equiv \sum_{\substack{b \in A \\
b \neq a}} \frac{k_{a} \cdot k_{b}}{z_{a}-z_{b}}=0 \quad \text { The Scattering Equations } \\
& (\text { Cachazo, He, Yuan 2013) } \ldots \text { (Fairlie, Roberts 1972) }
\end{aligned}
$$

$$
k_{a}^{2}=0, \quad \sum_{a \in A} k_{a}^{\mu}=0, \quad A=\{1,2, \ldots N .\}
$$

Motivated by twistor string theory, DG proved $\mathcal{A}\left(k_{1}, k_{2}, \ldots k_{n}\right)$ are ϕ^{3} and Yang-Mills gluon field theory tree amplitudes, as conjectured by CHY.

Scattering Equations $\quad f_{a}(z, k)=0, \quad k_{a}^{2}=0 \quad z_{a} \rightarrow \frac{\alpha z_{a}+\beta}{\gamma z_{a}+\delta}$,
$U(z, k) \equiv \prod_{a<b}\left(z_{a}-z_{b}\right)^{-k_{a} \cdot k_{b}} \quad$ is Möbius invariant,
$\frac{\partial U}{\partial z_{a}}=-f_{a} U, \quad f_{a}(z, k)=\sum_{\substack{b \in A \\ b \neq a}} \frac{k_{a} \cdot k_{b}}{z_{a}-z_{b}}$,
implying $f_{a}(z) \rightarrow f_{a}(z) \frac{\left(\gamma z_{a}+\delta\right)^{2}}{(\alpha \delta-\beta \gamma)}$.
The infinitesimal transformations $\delta z_{a}=\epsilon_{1}+\epsilon_{2} z_{a}+\epsilon_{3} z_{a}^{2}$,
$U(z+\delta z) \sim U(z)+\frac{\partial U}{\partial z_{a}} \delta z_{a}$, so the f_{a} satisfy the three relations
$\sum_{a \in A} f_{a}=0, \quad \sum_{a \in A} z_{a} f_{a}=0, \quad \sum_{a \in A} z_{a}^{2} f_{a}=0$.
There are $N-3$ independent Scattering Equations $f_{a}=0$.
Fixing $z_{1}=\infty, z_{2}=1, z_{N}=0$, there are $N-3$ variables, and generally $(N-3)$! solutions $z_{a}(k)$.

Total Amplitudes

$\Psi_{N}=\prod_{a \in A}\left(z_{a}-z_{a+1}\right) \times$ Pfaffian for Yang-Mills

For example, $N=4$,

$$
\left.\begin{array}{rl}
A^{a b c d}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)= & g^{2}(\\
\left(f_{a b e} f_{\text {ecd }} \frac{n_{s}}{s}+f_{b c e} f_{e a d} \frac{n_{t}}{t}+f_{c a e} f_{\text {ebd }} \frac{n_{u}}{u}\right) \\
= & g^{2}\left(\left(\operatorname{tr}\left(T_{a} T_{b} T_{c} T_{d}\right)+\operatorname{tr}\left(T_{d} T_{c} T_{b} T_{a}\right)\right) A(1234)\right. \\
& +\left(\operatorname{tr}\left(T_{a} T_{c} T_{d} T_{b}\right)+\operatorname{tr}\left(T_{b} T_{d} T_{c} T_{a}\right)\right) A(1342) \\
& \left.+\left(\operatorname{tr}\left(T_{a} T_{d} T_{b} T_{c}\right)+\operatorname{tr}\left(T_{c} T_{b} T_{d} T_{a}\right)\right) A(1423)\right), \\
n_{s}=\left(\epsilon_{1} \cdot \epsilon_{2}\left(k_{1}-k_{2}\right)_{\alpha}+2 \epsilon_{1} \cdot k_{2} \epsilon_{2 \alpha}-2 \epsilon_{2} \cdot k_{1} \epsilon_{1 \alpha}\right) \\
\times\left(\epsilon_{3} \cdot \epsilon_{4}\left(k_{3}-k_{4}\right)^{\alpha}+2 \epsilon_{3} \cdot k_{4} \epsilon_{4}^{\alpha}-2 \epsilon_{4} \cdot k_{3} \epsilon_{3}^{\alpha}\right) \\
+\left(\epsilon_{1} \cdot \epsilon_{3} \epsilon_{2} \cdot \epsilon_{4}-\epsilon_{1} \cdot \epsilon_{4} \epsilon_{2} \cdot \epsilon_{3}\right) s,
\end{array}\right\} \begin{aligned}
& A(1234)=\frac{n_{s}}{s}+\frac{n_{t}}{t} . \quad s=\left(k_{1}+k_{2}\right)^{2}, t=\left(k_{2}+k_{3}\right)^{2}, u=\left(k_{1}+k_{3}\right)^{2} \\
& \mathcal{A}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=A(1234) .
\end{aligned}
$$

A Single Scalar Field, Massless ϕ^{3}

A single massless scalar field, $\Psi_{N}=1$.

$$
\begin{aligned}
& \quad \mathcal{A}^{\phi}\left(k_{1}, k_{2}, \ldots, k_{N}\right)=\oint_{\mathcal{O}} \prod_{a \in A}^{\prime} \frac{1}{f_{a}(z, k)} \prod_{a \in A} \frac{d z_{a}}{\left(z_{a}-z_{a+1}\right)^{2}} / d \omega \\
& \mathcal{A}^{\phi}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{1}{s}+\frac{1}{t}, \\
& A^{\text {total }}= \\
& =\mathcal{A}^{\phi}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)+\mathcal{A}^{\phi}\left(k_{1}, k_{3}, k_{2}, k_{4}\right)+\mathcal{A}^{\phi}\left(k_{1}, k_{4}, k_{2}, k_{3}\right) \\
& = \\
& 2\left(\frac{1}{s}+\frac{1}{t}+\frac{1}{u}\right)
\end{aligned}
$$

Rewriting the Scattering Equations as Polynomial Equations whose degrees are as small as possible:

For a subset $U \subset A$,

$$
k_{U} \equiv \sum_{a \in U} k_{a}, \quad z_{U} \equiv \prod_{b \in U} z_{b},
$$

then the Scattering Equations

$$
\sum_{\substack{b \in A \\ b \neq a}} \frac{k_{a} \cdot k_{b}}{z_{a}-z_{b}}=0
$$

are equivalent to the homogeneous polynomial equations

$$
\sum_{\substack{U \subset A \\|U|=m}} k_{U}^{2} z_{U}=0, \quad 2 \leq m \leq N-2
$$

where the sum is over all $\frac{N!}{m!(N-m)!}$ subsets $U \subset A$ with m elements.

Proof of the Polynomial Form of the Scattering Equations

$$
\begin{aligned}
& p^{\mu}(z) \equiv \sum_{a \in A} \frac{k_{a}^{\mu}}{z-z_{a}}, \quad \sum_{a} k_{a}^{\mu}=0, \quad k_{a}^{2}=0, \\
& \begin{aligned}
p^{2}(z) & =\sum_{a, b} \frac{k_{a} \cdot k_{b}}{\left(z-z_{a}\right)\left(z-z_{b}\right)}=\frac{1}{2} \sum_{a} \frac{1}{z-z_{a}} \sum_{b \neq a} \frac{k_{a} \cdot k_{b}}{\left(z_{a}-z_{b}\right)}=0 \\
2 p^{2}(z) \prod_{c \in A}\left(z-z_{c}\right) & =\sum_{a, b \in A} k_{a} \cdot k_{b} \prod_{\substack{c \in A \\
c \neq a, b}}\left(z-z_{c}\right) \\
& =\sum_{m=0}^{N-2} z^{N-m-2} \sum_{\substack{U \subset A \\
|U|=m}} z_{U} \sum_{\substack{S \subset \bar{U} \\
|S|=2}} k_{S}^{2}=0
\end{aligned}
\end{aligned}
$$

where $\bar{U}=\{b \in A: b \notin U\}$. Using $\sum_{\substack{s \subseteq \bar{U} \\|S|=2}} k_{S}^{2}=k_{\bar{U}}^{2}=k_{U}^{2}$, then
$\widetilde{h}_{m} \equiv \sum_{\substack{U \subset A \\|U|=m}} k_{U}^{2} z_{U}=0$.
$\widetilde{h}_{m}=0$ are the Unique Möbius Invariant Polynomial Equations L_{-1} denotes the generator of translations,

$$
L_{-1}=-\sum_{a \in A} \frac{\partial}{\partial z_{a}}, \quad L_{-1} \tilde{h}_{m}=-(N-m-1) \tilde{h}_{m-1}
$$

L_{1}, special conformal transformations

$$
L_{1}=-\sum_{a \in A} z_{a}^{2} \frac{\partial}{\partial z_{a}}+\sum_{1}^{A}, \quad L_{1} \tilde{h}_{m}=(m-1) \tilde{h}_{m+1}, \quad \Sigma_{1}^{A} \equiv \sum_{a \in A} z_{a} .
$$

L_{0}, scale transformations

$$
L_{0}=-\sum_{a \in A} z_{a} \frac{\partial}{\partial z_{a}}+\frac{N}{2}, \quad L_{0} \tilde{h}_{m}=\left(\frac{1}{2} N-m\right) \tilde{h}_{m},
$$

$$
\text { so that }\left[L_{1}, L_{-1}\right]=2 L_{0}, \quad\left[L_{0}, L_{ \pm 1}\right]=\mp L_{ \pm 1} .
$$

The $\tilde{h}_{m}, 2 \leq m \leq N-2$, form an $(N-3)$-dimensional multiplet of the Möbius algebra, i.e. a representation of 'Möbius spin' $\frac{1}{2} N-2$. The equations $\tilde{h}_{m}\left(z_{1}, \ldots, z_{n}\right)=\sum_{\substack{U \subset A \\|U|=m}} k_{U}^{2} z_{U}=0$ determine a discrete set of points (up to Möbius invariance).

$$
z_{1} \rightarrow \infty, z_{N-1} \text { fixed, } z_{N} \rightarrow 0
$$

Amplitudes in terms of Polynomial Constraints

$$
\begin{aligned}
& \mathcal{A}_{N}=\oint_{\mathcal{O}} \Psi_{N}(z, k) \prod_{m=1}^{N-3} \frac{1}{h_{m}(z, k)} \prod_{2 \leq a<b \leq N-1}\left(z_{a}-z_{b}\right) \prod_{a=2}^{N-2} \frac{z_{a} d z_{a+1}}{\left(z_{a}-z_{a+1}\right)^{2}} . \\
& h_{m}=\lim _{z_{1} \rightarrow \infty} \frac{\widetilde{h}_{m+1}}{z_{1}}=\frac{1}{m!} \sum_{\substack{a_{1}, a_{2}, \ldots, a_{m} \neq \neq 1, N \\
a_{i} \text { uneq. }}} k_{1 a_{1} \ldots a_{m}}^{2} z_{a_{1}} z_{a_{2}} \ldots z_{a_{m}}, \quad 1 \leq m \leq N-3,
\end{aligned}
$$

The $N-3$ polynomial equations $h_{m}=0$, of order m, linear in each z_{a} individually, are equivalent to the Scattering Equations $f_{a}=\sum_{b} \frac{k_{a} \cdot k_{b}}{z_{a}-z_{b}}=0$.

By Bézout's theorem, they determine $(N-3)$! solutions for the $(N-3)$ ratios $z_{2} / z_{N-1}, z_{3} / z_{N-1}, \ldots, z_{N-2} / z_{N-1}$.

$$
k_{i}^{2}=0, \quad k_{12 \ldots a}^{2}=\left(k_{1}+k_{2}+\ldots k_{a}\right)^{2}=2 k_{1} \cdot k_{2}+2 k_{1} \cdot k_{3}+\ldots
$$

The Scattering Equations:

$$
N=4 \quad h_{1}=k_{12}^{2} z_{2}+k_{13}^{2} z_{3}=0,
$$

$$
N=5 \quad h_{1}=k_{12}^{2} z_{2}+k_{13}^{2} z_{3}+k_{14}^{2} z_{4}=0,
$$

$$
h_{2}=k_{123}^{2} z_{2} z_{3}+k_{124}^{2} z_{2} z_{4}+k_{134}^{2} z_{3} z_{4}=0,
$$

$$
N=6 \quad h_{1}=k_{12}^{2} z_{2}+k_{13}^{2} z_{3}+k_{14}^{2} z_{4}+k_{15}^{2} z_{5}=0,
$$

$$
h_{2}=k_{123}^{2} z_{2} z_{3}+k_{124}^{2} z_{2} z_{4}+k_{125}^{2} z_{2} z_{5}
$$

$$
+k_{134}^{2} z_{3} z_{4}+k_{135}^{2} z_{3} z_{5}+k_{145}^{2} z_{4} z_{5}=0,
$$

$$
h_{3}=k_{1234}^{2} z_{2} z_{3} z_{4}+k_{1235}^{2} z_{2} z_{3} z_{5}+k_{1345}^{2} z_{3} z_{4} z_{5}=0 .
$$

$N \quad h_{1}, h_{2}, \ldots, h_{N-3}=0, \quad z_{2}, z_{3}, \ldots, z_{N-2}, z_{N-1}$.

Amplitudes as Algebraic Objects attached to a Variety

$$
\begin{gathered}
\mathcal{A}_{\mathcal{N}}=\sum_{\text {solutions }} \frac{\Psi_{N}(z, k)}{J(z, k)} \prod_{2 \leq a<b \leq N-1}\left(z_{a}-z_{b}\right) \prod_{a=2}^{N-2} \frac{z_{a} d z_{a}}{\left(z_{a}-z_{a+1}\right)^{2}} \\
J(z, k)=\operatorname{det}\left[\frac{\partial h_{m}}{\partial z_{a}}\right]_{\substack{1 \leq m \leq N-3 \\
2 \leq a \leq N-2}} .
\end{gathered}
$$

The integrals are somewhat symbolic, just sums over the solutions of the Scattering Equations, and hence rational functions of the Mandelstam variables.

For the ring of polynomials in $C P^{N-3}\left(z_{2}, \ldots, z_{N-2}\right)$, consider the ideal associated with the h_{1}, \ldots, h_{N-3} polynomials. The equations $h_{m}=0$ define a projective variety, which is a set of $(N-3)$! points.

The goal is to understand the amplitudes in terms of natural algebraic objects attached to the variety in $C P^{N-3}$ described by the Scattering Equations.

To solve $h_{m}(z, k)=0, \quad 1 \leq m \leq N-3$,
we will eliminate $z_{a}, 2 \leq a \leq N-3$,
in terms of $u=z_{N-2}$ and $v=z_{N-1}$, to give
a single variable polynomial equation of order $(N-3)$! in u / v, whose roots determine the solutions of the Scattering Equations.

Linear equations determine z_{2}, \ldots, z_{N-3} from u / v.

Solving the Scattering Equations
$N=4$
$h_{1}=k_{12}^{2} z_{2}+k_{13}^{2} z_{3}=0, \quad z_{2} / z_{3}=-k_{13}^{2} / k_{12}^{2}=-k_{1} \cdot k_{3} / k_{1} \cdot k_{2}$.
$N=5$

$$
\begin{aligned}
\sigma_{a b \ldots} & \equiv\left(k_{1}+k_{a}+k_{b}+\ldots\right)^{2} \\
z_{2} & =x, z_{3}=u, z_{4}=v
\end{aligned}
$$

$h_{1}=\sigma_{2} x+\sigma_{3} u+\sigma_{4} v=0$,
$h_{2}=\sigma_{23} x u+\sigma_{24} x v+\sigma_{34} u v=0$,
eliminating x yields a quadratic equation for u / v.
This can be written as

$$
0=\left|\begin{array}{cc}
\sigma_{3} u+\sigma_{4} v & \sigma_{2} \\
\sigma_{34} u v & \sigma_{23} u+\sigma_{24} v
\end{array}\right|=\left|\begin{array}{ll}
h_{1} & \frac{\partial h_{1}}{\partial x} \\
h_{2} & \frac{\partial h_{2}}{\partial x}
\end{array}\right|=\Delta_{5},
$$

which is independent of x.

Another way to establish that Δ_{5} is independent of x
Let $\Delta_{5}=0$ be the condition on u, v such that $h_{1}=0, h_{2}=0$ have a common solution for some x.
If $\Delta_{5}=\left|\begin{array}{ll}h_{1} & \frac{\partial h_{1}}{\partial x} \\ h_{2} & \frac{\partial h_{2}}{\partial x}\end{array}\right|=0$ for some $x=x_{0}$, then there exists a solution ξ such that

$$
\begin{aligned}
& h_{1}\left(x_{0}+\xi, u, v\right)=h_{1}\left(x_{0}, u, v\right)+\xi \frac{\partial h_{1}}{\partial x}\left(x_{0}, u, v\right)=0 \\
& h_{2}\left(x_{0}+\xi, u, v\right)=h_{2}\left(x_{0}, u, v\right)+\xi \frac{\partial h_{2}}{\partial x}\left(x_{0}, u, v\right)=0
\end{aligned}
$$

since h_{m} is linear in each of the variables x, u, v separately.
Then Δ_{5} is independent of x.
$N=6 \quad$ write $(x, y, u, v)=\left(z_{2}, z_{3}, z_{4}, z_{5}\right)$
$h_{1}=\sigma_{2} x+\sigma_{3} y+\sigma_{4} u+\sigma_{5} v=0$,
$h_{2}=\sigma_{23} x y+\sigma_{24} x u+\sigma_{34} y u+\sigma_{25} x v+\sigma_{35} y v+\sigma_{45} u v=0$,
$h_{3}=\sigma_{234} x y u+\sigma_{235} x y v+\sigma_{245} x u v+\sigma_{345} y u v=0$,
eliminating x, y yields a sextic equation for u / v.
This can be written

$$
\begin{gathered}
\Delta_{6}=\left|\begin{array}{cccccc}
h_{1} & h_{1}^{y} & h_{1}^{x} & h_{1}^{x y} & 0 & 0 \\
h_{2} & h_{2}^{y} & h_{2}^{x} & h_{2}^{x y} & 0 & 0 \\
h_{3} & h_{3}^{y} & h_{3}^{x} & h_{3}^{x y} & 0 & 0 \\
0 & 0 & h_{1} & h_{1}^{y} & h_{1}^{x} & h_{1}^{x y} \\
0 & 0 & h_{2} & h_{2}^{y} & h_{2}^{x} & h_{2}^{x y} \\
0 & 0 & h_{3} & h_{3}^{y} & h_{3}^{x} & h_{3}^{x y}
\end{array}\right|=0, \\
h_{m}^{x}=\frac{\partial h_{m}}{\partial x}, \quad h_{m}^{x y}=\frac{\partial^{2} h_{m}}{\partial x \partial y}, \quad \text { etc. } \quad \text { where } \frac{\partial \Delta_{6}}{\partial x}=\frac{\partial \Delta_{6}}{\partial y}=0
\end{gathered}
$$

Elimination theory developed by Sylvester and Cayley
Supplement $h_{1}=h_{2}=h_{3}=0$ with $x h_{1}=x h_{2}=x h_{3}=0$, providing 6 linear relations between $1, x, y, x y, x^{2}, x^{2} y$,

$$
\begin{aligned}
h_{m} & =a_{m}+b_{m} y+c_{m} x+d_{m} x y=0 \\
x h_{m} & =a_{m} x+b_{m} x y+c_{m} x^{2}+d_{m} x^{2} y=0
\end{aligned}
$$

The condition of their consistency is

$$
\left|\begin{array}{cccccc}
a_{1} & b_{1} & c_{1} & d_{1} & 0 & 0 \\
a_{2} & b_{2} & c_{2} & d_{2} & 0 & 0 \\
a_{3} & b_{3} & c_{3} & c_{3} & 0 & 0 \\
0 & 0 & a_{1} & b_{1} & c_{1} & d_{1} \\
0 & 0 & a_{2} & b_{2} & c_{2} & d_{2} \\
0 & 0 & a_{3} & b_{3} & c_{3} & d_{3}
\end{array}\right|=0,
$$

Elimination theory developed by Sylvester and Cayley
Supplement $h_{1}=h_{2}=h_{3}=0$ with $x h_{1}=x h_{2}=x h_{3}=0$, providing 6 linear relations between $1, x, y, x y, x^{2}, x^{2} y$,

$$
\begin{aligned}
h_{m} & =a_{m}+b_{m} y+c_{m} x+d_{m} x y=0 \\
x h_{m} & =a_{m} x+b_{m} x y+c_{m} x^{2}+d_{m} x^{2} y=0
\end{aligned}
$$

The condition of their consistency is equal to
$\Delta_{6}=\left|\begin{array}{cccccc}h_{1} & h_{1}^{y} & h_{1}^{x} & h_{1}^{x y} & 0 & 0 \\ h_{2} & h_{2}^{y} & h_{2}^{x} & h_{2}^{x y} & 0 & 0 \\ h_{3} & h_{3}^{y} & h_{3}^{x} & h_{3}^{x y} & 0 & 0 \\ 0 & 0 & h_{1} & h_{1}^{y} & h_{1}^{x} & h_{1}^{x y} \\ 0 & 0 & h_{2} & h_{2}^{y} & h_{2}^{x} & h_{2}^{x y} \\ 0 & 0 & h_{3} & h_{3}^{y} & h_{3}^{x} & h_{3}^{x y}\end{array}\right|=\left|\begin{array}{cccccc}a_{1} & b_{1} & c_{1} & d_{1} & 0 & 0 \\ a_{2} & b_{2} & c_{2} & d_{2} & 0 & 0 \\ a_{3} & b_{3} & c_{3} & c_{3} & 0 & 0 \\ 0 & 0 & a_{1} & b_{1} & c_{1} & d_{1} \\ 0 & 0 & a_{2} & b_{2} & c_{2} & d_{2} \\ 0 & 0 & a_{3} & b_{3} & c_{3} & d_{3}\end{array}\right|=0$,
since the left determinant is independent of x, y.

As before, the independence of Δ_{6} from x, y can be established by noting that $\Delta_{6}=0$ is also the condition for the existence of ξ, η such that

$$
\begin{aligned}
h_{m}(x+\xi, y+\eta, u, v) & =h_{m}+\xi h_{m}^{x}+\eta h_{m}^{y}+\eta \xi h_{m}^{x y}=0, \\
\xi h_{m}(x+\xi, y+\eta, u, v) & =\xi h_{m}+\xi^{2} h_{m}^{x}+\xi \eta h_{m}^{y}+\xi^{2} \eta h_{m}^{x y}=0 .
\end{aligned}
$$

So $\Delta_{6}=0$ provides the condition on u, v for a common solution $h_{1}=h_{2}=h_{3}=0$ independent of x, y.

$$
\left(\begin{array}{cccccc}
h_{1} & h_{1}^{y} & h_{1}^{x} & h_{1}^{x y} & 0 & 0 \\
h_{2} & h_{2}^{y} & h_{2}^{x} & h_{2}^{x y} & 0 & 0 \\
h_{3} & h_{3}^{y} & h_{3}^{x} & h_{3}^{x y} & 0 & 0 \\
0 & 0 & h_{1} & h_{1}^{y} & h_{1}^{x} & h_{1}^{x y} \\
0 & 0 & h_{2} & h_{2}^{y} & h_{2}^{x} & h_{2}^{x y} \\
0 & 0 & h_{3} & h_{3}^{y} & h_{3}^{x} & h_{3}^{x y}
\end{array}\right)\left(\begin{array}{c}
1 \\
\eta \\
\xi \\
\eta \xi \\
\xi^{2} \\
\xi^{2} \eta
\end{array}\right)=0 .
$$

Then compute x, y in terms of u, v from linear relations Use the null vector to find

$$
\left(\begin{array}{ccccc}
h_{2} & h_{2}^{y} & h_{2}^{x y} & 0 & 0 \\
h_{3} & h_{3}^{y} & h_{3}^{x y} & 0 & 0 \\
0 & 0 & h_{1}^{y} & h_{1}^{x} & h_{1}^{x y} \\
0 & 0 & h_{2}^{y} & h_{2}^{x} & h_{2}^{x y} \\
0 & 0 & h_{3}^{y} & h_{3}^{x} & h_{3}^{x y}
\end{array}\right)\left(\begin{array}{c}
1 \\
\eta \\
\eta \xi \\
\xi^{2} \\
\xi^{2} \eta
\end{array}\right)=-\left(\begin{array}{c}
h_{2}^{x} \\
h_{3}^{x} \\
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right) \xi,
$$

then

$$
\eta=\frac{\xi \eta}{\xi}=-\left|\begin{array}{ccccc}
h_{2} & h_{2}^{y} & h_{2}^{x y} & 0 & 0 \\
h_{3} & h_{3}^{y} & h_{3}^{x y} & 0 & 0 \\
0 & 0 & h_{1}^{y} & h_{1}^{x} & h_{1}^{x y} \\
0 & 0 & h_{2}^{y} & h_{2}^{x} & h_{2}^{x y} \\
0 & 0 & h_{3}^{y} & h_{3}^{x} & h_{3}^{x y}
\end{array}\right|^{-1}\left|\begin{array}{ccccc}
h_{2} & h_{2}^{y} & 0 & 0 & 0 \\
h_{3} & h_{3}^{y} & 0 & 0 & 0 \\
0 & 0 & h_{1} & h_{1}^{x} & h_{1}^{x y} \\
0 & 0 & h_{2} & h_{2}^{x} & h_{2}^{x y} \\
0 & 0 & h_{3} & h_{3}^{x} & h_{3}^{x y}
\end{array}\right| .
$$

For $\eta=0, y$ satisfies $h_{m}(x, y, u, v)=0$ for some x.

So compute y in terms of u, v from the linear relation

$$
\eta=\frac{\xi \eta}{\xi}=-\left|\begin{array}{lll}
h_{1}^{y} & h_{1}^{x} & h_{1}^{x y} \\
h_{2}^{y} & h_{2}^{x} & h_{2}^{x y} \\
h_{3}^{y} & h_{3}^{x} & h_{3}^{x y}
\end{array}\right|^{-1}\left|\begin{array}{ccc}
h_{1} & h_{1}^{x} & h_{1}^{x y} \\
h_{2} & h_{2}^{x} & h_{2}^{x y} \\
h_{3} & h_{3}^{x} & h_{3}^{x y}
\end{array}\right|=0 .
$$

Linear in y, independent of x.
Notation:

$$
h \equiv\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right), \quad\left|\begin{array}{lll}
h & h^{x} & h^{x y}
\end{array}\right|=0 .
$$

$N=7$
Writing $\left(z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\right)=(x, y, z, u, v)$ we will eliminate x, y, z to obtain a single variable equation for u / v of order $(N-3)!=24$, using the 24 equations

$$
h_{m}=y h_{m}=x h_{m}=x y h_{m}=x^{2} h_{m}=x^{2} y h_{m}=0, \quad 1 \leq m \leq 4
$$

providing linear relations between the 24 monomials

$$
x^{p} y^{q} z^{r}, \quad 0 \leq p \leq 3,0 \leq q \leq 2,0 \leq r \leq 1,
$$

with

$$
h_{m}=a_{m}+b_{m} z+c_{m} y+d_{m} x+e_{m} y z+f_{m} x z+g_{m} x y+j_{m} x y z
$$

$\mathrm{N}=7$
Writing $\left(z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\right)=(x, y, z, u, v)$ we will eliminate x, y, z to obtain a single variable equation for u / v of order $(N-3)!=24$, using the 24 equations

$$
\begin{aligned}
& h_{m}=y h_{m}=x h_{m}=x y h_{m}=x^{2} h_{m}=x^{2} y h_{m}=0, \quad 1 \leq m \leq 4 \\
& \quad C_{2}=\left\{1, x, y, x y, x^{2}, x^{2} y\right\}
\end{aligned}
$$

providing linear relations between the 24 monomials

$$
C_{3}=\left\{x^{p} y^{q} z^{r}, \quad 0 \leq p \leq 3,0 \leq q \leq 2,0 \leq r \leq 1\right\},
$$

with

$$
\begin{aligned}
& h_{m}=a_{m}+b_{m} z+c_{m} y+d_{m} x+e_{m} y z+f_{m} x z+g_{m} x y+j_{m} x y z \\
& \quad B_{3}=x^{m} y^{n} z^{p}, \quad m, n, p=0,1 .
\end{aligned}
$$

$\Delta_{7}=\left|M_{7}\right|=0=$

where $h_{m}^{x y z}=\partial_{x} \partial_{y} \partial_{z} h_{m}, \quad h=\left(\begin{array}{l}h_{1} \\ h_{2} \\ h_{3} \\ h_{4}\end{array}\right)$.
Δ_{7} vanishes for $h_{m}=0$, and is independent of x, y, z.
The rows of M_{7} are labeled by $\alpha \in m, C_{2}$, the columns by $\beta \in C_{3}$.
The non-zero entries are $M_{m \alpha, \beta}=h_{m}^{\gamma}$ if $\beta=\alpha \gamma, \quad \gamma \in B_{3}$.
$\operatorname{deg} M_{m \alpha, \beta}=m+\operatorname{deg} \alpha+\operatorname{deg} \beta$,
$\operatorname{deg} \Delta_{7}=\sum_{m, C_{2}}(m+\operatorname{deg} \alpha)+\sum_{c_{4}} \operatorname{deg} \beta=24$.
The coefficient of v^{24} in Δ_{7} is
$h_{1}^{6}\left(h_{2}^{z}\right)^{2}\left(h_{2}^{y}\right)^{2}\left(h_{2}^{x}\right)^{2}\left(h_{3}^{y z}\right)^{2}\left(h_{3}^{z x}\right)^{2}\left(h_{3}^{x y}\right)^{2}\left(h_{4}^{x y z}\right)^{6}=\sigma_{6}^{6} \sigma_{26}^{2} \sigma_{36}^{2} \sigma_{46}^{2} \sigma_{236}^{2} \sigma_{246}^{2} \sigma_{346}^{2} \sigma_{2346}^{2}$.

General N

$(N-3)$! relations $h_{m} C_{N-5}=0$
(labeling rows m, α)
between the $(N-3)$! variables C_{N-4}
(labeling columns β).

$$
\begin{gathered}
C_{M}=\left\{\prod_{a=1}^{M} x_{a}^{m_{a}}: 0 \leq m_{a} \leq M-a+1,1 \leq a \leq M\right\} \\
B_{M}=\left\{\prod_{a=1}^{M} x_{a}^{m_{a}}: 0 \leq m_{a} \leq 1,1 \leq a \leq M\right\} \\
\\
\begin{array}{c}
M_{m \alpha, \beta}=h_{m}^{\gamma} \quad \text { if } \beta=\alpha \gamma, \quad \gamma \in B_{N-4} \\
=0 \quad \text { if } \beta \notin \alpha B_{N-4} . \\
\Delta_{N}=\operatorname{det} M=0 .
\end{array}
\end{gathered}
$$

$\operatorname{deg} M_{m \alpha, \beta}=m+\operatorname{deg} \alpha+\operatorname{deg} \beta$,

$$
\operatorname{deg} \Delta_{N}=\sum_{m=1}^{N-3} \sum_{\alpha \in C_{N-5}}(m+\operatorname{deg} \alpha)-\sum_{\beta \in C_{N-4}} \operatorname{deg} \beta=(N-3)!
$$

Since no element of M is more than linear in v, the term $v^{(N-3)!}$ in det M must come from the product of linear factors $u^{0} v^{1}$.

The element $M_{m \alpha, \beta}$ is of degree one when $m-\operatorname{deg} \gamma=1$.

The coefficient of $v^{(N-3)!}$ contains

$$
\prod_{\gamma \in B_{N-4}}\left[h_{m}^{\gamma}\right]^{n_{\gamma}}
$$

where $m=\operatorname{deg} \gamma+1$,

$$
n_{\gamma}=(N-4-\operatorname{deg} \gamma)!(\operatorname{deg} \gamma)!
$$

Summary

The scattering equations can be reformulated as polynomial equations that are linear in the variables z_{a} separately. Using Möbius invariance, the polynomials are reduced to $(N-3)$ equations in $(N-3)$ variables.

Facilitated by this linearity, elimination theory is used to construct a polynomial equation of degree $(N-3)$! for the single variable z_{N-2} / z_{N-1}, determining the ($\mathrm{N}-3$)! solutions expected from Bézout's theorem. Linear relations relate the remaining variables to the single variable.

For the $(N-3)$ equations $h_{m}\left(z_{2}, \ldots, z_{N-2} ; k_{1}, \ldots k_{N-1}\right)=0$, the $(N-3)$! solutions $z_{a}(\mathbf{k})$ in $C P^{N-3}$ define a set of points forming the variety of the ideal $<h_{1}, h_{2}, \ldots h_{N-3}>$. The goal is to understand the N-point scattering amplitudes, which appear as rational functions of the kinematic invariants, as natural algebraic objects attached to this variety.

