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Motivation

masses do matter

non-planar diagrams may contribute

integrals diverge

from the beauty of simple formulas (in special kinematics) 
to the beauty of the structures (in arbitrary kinematics)

Path
Multiloop Integrand Decomposition: exploiting dimensional regularisation

Magnus Series for Master Integrals

Amplitudes & Phenomenology
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High Energy Physics Goals: Loops vs Legs

Loops
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High precision

Indirect searches

Direct discovery

High multiplicity
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Slow progress:
one unit O(10ys)

Complexity: Loops vs Legs

many particle masses

limitations:

Loops

Legs

many kinematic invariants

with Parke and Taylor 
in good company up to 
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Complexity: Loops vs Legs

One-Loop Revolution

Automation

Dramatic impact 
on Collider Phenomenology

>> Kunszt, Kosower



Why is it all that difficult?
Feynman Diagrams ~ The realm of Integral Calculus

~ dx  dy  dz ... f(x, y, z,...)



  

  

  

  

Why is it all that difficult?
Feynman Diagrams ~ The realm of Integral Calculus

Turning Integral Calculus into an Algebraic Problem

~ dx  dy  dz ... f(x, y, z,...)



Amplitudes Decomposition: 
                                            the algebraic way

Basis: {i j k}

Scalar product/Projection:
to extract the components

a = ax i  +  ay j  +  az k

ax = a.i 

ay = a.j 

az = a.k



Projections :: On-Shell Cut-Conditions
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vanishing denominators



Completeness Relations: cutting “1”

60 CHAPTER 3. MATHEMATICAL FORMALISM OF QUANTUM MECHANICS

i.e. the transition amplitudes of state |ψ 〉 to states |ψn 〉. If we now insert Eq. (3.23) into
Eq. (3.21)

|ψ 〉 =
∑

n

|ψn 〉 〈ψn|
︸ ︷︷ ︸

Pn

ψ 〉 , (3.24)

we see that for a complete set of orthonormal basis vectors the orthogonal projectors
satisfy the following completeness relation

∑

n
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∑

n

|ψn 〉 〈ψn| = 1 . (3.25)

A projection operator Pn acting on an arbitrary state |ψ 〉 will thus project the state
to the state |ψn 〉 with a probability of | 〈ψn |ψ 〉 |2. Summarizing, the Pn satisfy

PnPm = δnm and P 2
n = Pn . (3.26)

Physically, this represents the class of projective measurements such as the measure-
ment of the polarization of light.

Example: Polarization Filter
Consider a photon, linearly polarized along the 45◦-plane (with respect to the horizontal
plane). We can then describe its polarization by a state vector

|ψ 〉 =
1√
2

( |H 〉 + |V 〉 ) , (3.27)

where |H 〉 and |V 〉 are the basis vectors of a 2–dimensional Hilbert space corresponding
to horizontal and vertical polarization respectively. If we perform a measurement of
the polarization by sending the photon through a polarization filter, e.g. in horizontal
orientation, we get the measurement outcome by calculating the expectation value of the
horizontal projector |H 〉 〈H |. Lets first calculate the projection onto |H 〉
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It’s interesting to note that the expectation value of the projector is exactly the squared
transition amplitude 〈H |ψ 〉 – the transition probability. We conclude that the proba-
bility for the photon to pass the polarization filter is 1
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Completeness Relations: cutting “1”

the richness of factorization

=



Integrand-Reduction

Ossola & P.M. (2011)

Badger, Frellesvig, Zhang (2011)
Zhang (2012)

Mirabella, Ossola, Peraro, & P.M. (2012)

Ossola Papadopoulos Pittau  (2006)

Ellis Giele Kunszt Melnikov  (2007)

@10

unitarity at integrand level

TASI lectures @ 20

SuperGravity @ 40
MHV @ 30



means of the Finiteness Theorem and of the Shape Lemma, we proved that the residue at

the maximum-cuts is parametrised exactly by a number of coe�cients equal to the number

of solutions of the cut itself.
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The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic

one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],

and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional

regularization scheme, any one-loop n-point amplitude can be written as

An =

∫

ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4− 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).
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D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4− 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).
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means of the Finiteness Theorem and of the Shape Lemma, we proved that the residue at

the maximum-cuts is parametrised exactly by a number of coe�cients equal to the number
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One-Loop Integrand Decomposition

  f’s are “spurious” ==> integrate to 0 !!!
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Figure 3.3: Schematic illustration of the fit-on-the-cut reduction technique at one loop.

the non-vanishing contributions coming from higher-point residues. This leads to a top-

down algorithm, schematically illustrated in Fig. 3.3, which allows to compute any one-loop

amplitude with any number of external legs.

Within semi-numerical computations, the algorithm is usually implemented by sampling

the integrand on several solutions of the multiple cuts and subtracting at each step of the

reduction all the non-vanishing contributions coming from higher-point residues. This yields

a system of equations for the coe�cients of each residue. The method is suited for automation

and it has been implemented in several codes, some of which are public (e.g. CutTools [42]

and Samurai [43]). Its usage within several automated frameworks [44–52] has been partic-

ularly successful and produced highly non-trivial phenomenological results.

In this section we give a brief review of this method, as proposed in Ref.s [40, 41, 43],

addressing in some detail the computation of 5-, 4-, 3-, 2-, and 1-point residues, also commonly

known as pentagons, boxes, triangles, bubbles and tadpoles respectively. In Chapter 4 we

will present an alternative integrand-reduction algorithm, namely the integrand reduction via

Laurent series expansion [96], which can be numerically more accurate and e�cient.

5-point residues A maximum-cut in a (4� 2✏)-dimensional one-loop amplitude is a 5-ple

cut. The corresponding system of equations Di
1

= · · · = Di
5

= 0 has one solution and the

residue �i
1

···i
5

, as already observed, can be parametrized by one coe�cient, in agreement with

the maximum-cut theorem. Indeed, using Eq. (3.12) and the parametrization in Eq. (3.27),

Ossola Papadopoulos Pittau

integrand subtraction required!
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4.1 The method 47

Figure 4.1: Schematic illustration of the simplifications involved in the Laurent expansion

method, with respect to the traditional method depicted in Fig. 3.3.

universal and does not depend on the process, the parametric form of the coe�cient-level cor-

rections can be computed once and for all, in terms of a subset of the higher-point coe�cients.

More in detail, the corrections at the coe�cient level are known functions of a subset of the

coe�cients of 3- and 2-point residues. In particular, no subtraction term coming from 4- and

5-point contributions is ever needed. This allows to skip the computation of the (spurious)

5-point contributions entirely, and to completely disentangle the determination of 4-point

residues from the one of lower point contributions. A pictorial view of the simplifications

obtained with the Laurent expansion method is given in Fig. 4.1.

In the following, we address more in detail the computation of 5-, 4-, 3-, 2-, and 1-

point residues, also commonly known as pentagons, boxes, triangles, bubbles and tadpoles

respectively. For simplicity, we first focus on renormalizable theories, where (up to a suitable

choice of gauge) the maximum allowed rank of the integrand is equal to the number of

loop denominators and the most general parametrization of the residues is the one given in

Eq. (3.27). Ninja can also be used for the computation of integrals whose rank exceeds the

number of denominators by one. The extension of the method to the higher-rank case is

discussed in Subsection 4.1.1.

5-point residues As mentioned above, pentagon contributions are spurious. Within the

original integrand reduction algorithm, their computation is needed because they appear in

the subtractions at the integrand level required for the evaluation of lower-point contribu-

Forde; Kilgore; Badger;

Laurent series implemented via univariate Polynomial Division

coefficients of MI’s :: a = a’+ a’’

Mirabella Peraro & P.M. (2012)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=

= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
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∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +
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(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=

= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=

= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=

= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)

– 7 –

J
H
E
P
0
8
(
2
0
1
0
)
0
8
0

2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=

= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=

= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=

= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=

= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=

= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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2.2.5 Double cut

The residue of the double-cut, D̄i = D̄j = 0, defined as,

∆ij(q̄) = Resij

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k

}

, (2.17)

can be interpolated by the following form,

∆ij(q̄) = c(ij)
2,0 + c(ij)

2,9 µ2 +

+c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
2 +

+c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
(

c(ij)
2,1 x1 − c(ij)

2,3 x4 − c(ij)
2,5 x3

)

(e1 · e2) +

+
(

c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 − c(ij)
2,7 x1x4 − c(ij)

2,8 x1x3

)

(e1 · e2)
2 . (2.18)

2.2.6 Single cut

The residue of the single-cut, D̄i = 0, defined as,

∆i(q̄) = Resi

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
+

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k
−

n−1
∑

i<j

∆ij(q̄)

D̄iD̄j

}

(2.19)

can be interpolated as follows,

∆i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

(

c(i)
1,1x2 + c(i)

1,2x1 − c(i)
1,3x4 − c(i)

1,4x3

)

(e1 · e2) . (2.20)

2.2.7 Discrete Fourier transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n

∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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2.2.5 Double cut

The residue of the double-cut, D̄i = D̄j = 0, defined as,

∆ij(q̄) = Resij

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k

}

, (2.17)

can be interpolated by the following form,

∆ij(q̄) = c(ij)
2,0 + c(ij)

2,9 µ2 +

+c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
2 +

+c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
(

c(ij)
2,1 x1 − c(ij)

2,3 x4 − c(ij)
2,5 x3

)

(e1 · e2) +

+
(

c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 − c(ij)
2,7 x1x4 − c(ij)

2,8 x1x3

)

(e1 · e2)
2 . (2.18)

2.2.6 Single cut

The residue of the single-cut, D̄i = 0, defined as,

∆i(q̄) = Resi
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N(q̄)

D̄0 · · · D̄n−1
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n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
+

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k
−

n−1
∑

i<j

∆ij(q̄)

D̄iD̄j

}

(2.19)

can be interpolated as follows,

∆i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

(

c(i)
1,1x2 + c(i)

1,2x1 − c(i)
1,3x4 − c(i)

1,4x3

)

(e1 · e2) . (2.20)

2.2.7 Discrete Fourier transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n

∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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2.2.5 Double cut

The residue of the double-cut, D̄i = D̄j = 0, defined as,

∆ij(q̄) = Resij

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k

}

, (2.17)

can be interpolated by the following form,

∆ij(q̄) = c(ij)
2,0 + c(ij)

2,9 µ2 +

+c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
2 +

+c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
(

c(ij)
2,1 x1 − c(ij)

2,3 x4 − c(ij)
2,5 x3

)

(e1 · e2) +

+
(

c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 − c(ij)
2,7 x1x4 − c(ij)

2,8 x1x3

)

(e1 · e2)
2 . (2.18)

2.2.6 Single cut

The residue of the single-cut, D̄i = 0, defined as,

∆i(q̄) = Resi

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
+

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k
−

n−1
∑

i<j

∆ij(q̄)

D̄iD̄j

}

(2.19)

can be interpolated as follows,

∆i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

(

c(i)
1,1x2 + c(i)

1,2x1 − c(i)
1,3x4 − c(i)

1,4x3

)

(e1 · e2) . (2.20)

2.2.7 Discrete Fourier transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n

∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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2.2.5 Double cut

The residue of the double-cut, D̄i = D̄j = 0, defined as,

∆ij(q̄) = Resij

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k

}

, (2.17)

can be interpolated by the following form,

∆ij(q̄) = c(ij)
2,0 + c(ij)

2,9 µ2 +

+c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
2 +

+c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
(

c(ij)
2,1 x1 − c(ij)

2,3 x4 − c(ij)
2,5 x3

)

(e1 · e2) +

+
(

c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 − c(ij)
2,7 x1x4 − c(ij)

2,8 x1x3

)

(e1 · e2)
2 . (2.18)

2.2.6 Single cut

The residue of the single-cut, D̄i = 0, defined as,

∆i(q̄) = Resi

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
+

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k
−

n−1
∑

i<j

∆ij(q̄)

D̄iD̄j

}

(2.19)

can be interpolated as follows,

∆i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

(

c(i)
1,1x2 + c(i)

1,2x1 − c(i)
1,3x4 − c(i)

1,4x3

)

(e1 · e2) . (2.20)

2.2.7 Discrete Fourier transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n

∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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2.2.5 Double cut

The residue of the double-cut, D̄i = D̄j = 0, defined as,

∆ij(q̄) = Resij
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−
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−
n−1
∑
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D̄iD̄jD̄k

}

, (2.17)

can be interpolated by the following form,

∆ij(q̄) = c(ij)
2,0 + c(ij)

2,9 µ2 +

+c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
2 +

+c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
(

c(ij)
2,1 x1 − c(ij)

2,3 x4 − c(ij)
2,5 x3

)

(e1 · e2) +

+
(

c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 − c(ij)
2,7 x1x4 − c(ij)

2,8 x1x3

)

(e1 · e2)
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2.2.6 Single cut
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(2.19)

can be interpolated as follows,

∆i(q̄) = c(i)
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1,2((q + p0) · e2) +

+c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

(

c(i)
1,1x2 + c(i)

1,2x1 − c(i)
1,3x4 − c(i)

1,4x3

)

(e1 · e2) . (2.20)

2.2.7 Discrete Fourier transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n

∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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2.2.5 Double cut
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can be interpolated by the following form,

∆ij(q̄) = c(ij)
2,0 + c(ij)

2,9 µ2 +

+c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
2 +

+c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
(

c(ij)
2,1 x1 − c(ij)

2,3 x4 − c(ij)
2,5 x3

)

(e1 · e2) +

+
(

c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 − c(ij)
2,7 x1x4 − c(ij)

2,8 x1x3

)

(e1 · e2)
2 . (2.18)

2.2.6 Single cut

The residue of the single-cut, D̄i = 0, defined as,

∆i(q̄) = Resi

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
+

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k
−

n−1
∑

i<j

∆ij(q̄)

D̄iD̄j

}

(2.19)

can be interpolated as follows,

∆i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

(

c(i)
1,1x2 + c(i)

1,2x1 − c(i)
1,3x4 − c(i)

1,4x3

)

(e1 · e2) . (2.20)

2.2.7 Discrete Fourier transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n

∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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}

, (2.17)

can be interpolated by the following form,
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)
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+
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4 + c(ij)
2,6 x2

3 − c(ij)
2,7 x1x4 − c(ij)
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)

(e1 · e2)
2 . (2.18)
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{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
+

−
n−1
∑

i<<k
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(2.19)

can be interpolated as follows,

∆i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

(

c(i)
1,1x2 + c(i)

1,2x1 − c(i)
1,3x4 − c(i)

1,4x3

)

(e1 · e2) . (2.20)

2.2.7 Discrete Fourier transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n

∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=

= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut
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]

=

= c(ijk!)
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4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑
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∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,
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3,0 + c(ijk)

3,7 µ2 +
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(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,

∆ijk!(q̄) = Resijk!

{

N(q̄)

D̄0 · · · D̄n−1
−
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D̄iD̄jD̄kD̄!D̄m
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(2.13)

is parametrized as,
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−
(

c(ijk!)
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4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk
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3,7 µ2 +

+
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3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)
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3,3 ((q + p0) · e3)

3 +

+
(
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3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
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3,7 µ2 −
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(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(
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2.2.2 Quintuple cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

∆ijk!m(q̄) = Resijk!m

{

N(q̄)

D̄0 · · · D̄n−1

}

(2.11)

can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,
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]
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4,3 µ2
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]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.
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3 =
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The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,
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where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 −
(

(c(ijk)
3,1 + c(ijk)

3,8 µ2)x4 + (c(ijk)
3,4 + c(ijk)

3,9 µ2)x3

)

(e1 · e2) +

+
(

c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

)

(e1 · e2)
2 −

(

c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)

– 7 –

J
H
E
P
0
8
(
2
0
1
0
)
0
8
0

2.2.2 Quintuple cut
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can be parametrized as [99],

∆ijk!m(q̄) = c(ijk!m)
5,0 µ2 . (2.12)

2.2.3 Quadruple cut

The residue of the quadruple-cut, D̄i = . . . = D̄! = 0, defined as,
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{

N(q̄)

D̄0 · · · D̄n−1
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n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

}

(2.13)

is parametrized as,

∆ijk!(q̄) = c(ijk!)
4,0 + c(ijk!)

4,2 µ2 + c(ijk!)
4,4 µ4 +

+
(

c(ijk!)
4,1 + c(ijk!)

4,3 µ2
)[

(K3 · e4)(q + p0) · e3 − (K3 · e3)(q + p0) · e4

]

=

= c(ijk!)
4,0 +c(ijk!)

4,2 µ2+c(ijk!)
4,4 µ4

−
(

c(ijk!)
4,1 +c(ijk!)

4,3 µ2
)[

(K3 · e4)x4−(K3 · e3)x3

]

(e1 · e2) , (2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.
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}
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2 + c(ijk)
3,3 ((q + p0) · e3)
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3

)
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(

c(ijk)
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4 + c(ijk)
3,6 x3

3

)

(e1 · e2)
3 . (2.16)
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3 =
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3,8 µ2)x4 + (c(ijk)
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2.2.4 Triple cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

∆ijk(q̄) = Resijk

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

}

(2.15)

is parametrized as,

∆ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+
(

c(ijk)
3,1 + c(ijk)

3,8 µ2
)

(q + p0) · e3 + c(ijk)
3,2 ((q + p0) · e3)

2 + c(ijk)
3,3 ((q + p0) · e3)

3 +

+
(

c(ijk)
3,4 + c(ijk)

3,9 µ2
)

(q + p0) · e4 + c(ijk)
3,5 ((q + p0) · e4)

2 + c(ijk)
3,6 ((q + p0) · e4)

3 =
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2.2.5 Double cut

The residue of the double-cut, D̄i = D̄j = 0, defined as,

∆ij(q̄) = Resij

{

N(q̄)

D̄0 · · · D̄n−1

−
n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m

−
n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k

}

, (2.17)

can be interpolated by the following form,

∆ij(q̄) = c(ij)
2,0 + c(ij)

2,9 µ2 +

+c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
2 +

+c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
(

c(ij)
2,1 x1 − c(ij)

2,3 x4 − c(ij)
2,5 x3

)

(e1 · e2) +

+
(

c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 − c(ij)
2,7 x1x4 − c(ij)

2,8 x1x3

)

(e1 · e2)
2 . (2.18)

2.2.6 Single cut

The residue of the single-cut, D̄i = 0, defined as,

∆i(q̄) = Resi

{

N(q̄)

D̄0 · · · D̄n−1
−

n−1
∑

i<<m

∆ijk!m(q̄)

D̄iD̄jD̄kD̄!D̄m
−

n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
+

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k
−

n−1
∑

i<j

∆ij(q̄)

D̄iD̄j

}

(2.19)

can be interpolated as follows,

∆i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

(

c(i)
1,1x2 + c(i)

1,2x1 − c(i)
1,3x4 − c(i)

1,4x3

)

(e1 · e2) . (2.20)

2.2.7 Discrete Fourier transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n

∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.
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D̄iD̄jD̄kD̄!D̄m
−

n−1
∑

i<<!

∆ijk!(q̄)

D̄iD̄jD̄kD̄!
+

−
n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k
−

n−1
∑

i<j

∆ij(q̄)

D̄iD̄j

}

(2.19)

can be interpolated as follows,

∆i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

(

c(i)
1,1x2 + c(i)

1,2x1 − c(i)
1,3x4 − c(i)

1,4x3

)

(e1 · e2) . (2.20)

2.2.7 Discrete Fourier transform

As proposed in [94], the coefficients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n

∑

!=0

c! x! , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:

– 8 –

Integrand decomposition via Laurent expansion
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New Methods for Scattering
Amplitudes in Gauge Theories

Abstract

Our research focuses on the development of integrand reduction methods for the evaluation of multi-loop scattering amplitudes in quantum field theories (QFTs). We have developed a coherent
mathematical framework for the integrand decomposition of Feynman graph integrals, based on algebraic geometry. This method is applicable both for phenomenological studies and for the
investigation of more formal properties of QFTs. Our algorithm has been implemented in the reduction libraries of the GOSAM package, a tool dedicated to the evaluation of one-loop amplitudes,
and used for phenomenological analyses relevant for the LHC. We demonstrate the completeness of our reduction algorithm by applying it to generic dimensionally regulated massive multi-loop
integrals in gauge theories.

Introduction

Scattering amplitudes in Quantum Field Theories:
• analytic functions of kinematic variables, determined by

their singularity structure
– accessible via graph techniques

(on-shell conditions $ cut-diagrams)
• decomposed in terms of independent (ir)rational or tran-

scendental functions, according to the number of loops

Generalized unitarity cuts as projectors isolating each
function through its analytic structure

Integrand reduction methods:
• based on generalized unitarity
• yield the decomposition of the amplitude from integrating

the decomposition of the integrands
• rely on the integrand reduction master formula:

– numerators of Feynman integrals as a combination of
(products of) denominators

– the residues at the multiple cuts are the coefficients of
the combination

· amplitude decomposition , algebraic problem
· i.e. the determination of the residues of the multiple cuts

Integrand reduction

Generic `-loop integral:

Mn =

Z
ddq1 . . . d

dq` Ii
1

...in, Ii
1

...in ⌘
Ni

1

...in

Di
1

. . . Din

• The numerator Ni
1

...in $ polynomial in qi

• The denominators Di $ (quadratic) polynomials in qi

The integrand-reduction method leads to:

Ii
1

...in =
�i

1

···in
Di

1

. . . Din
+ . . . +

nX

k=1

�ik

Dik
+ �;

• The residues �i
1

...ik $ polynomials in qi

– topology-dependent parametric form (independent of
the numerators)

– the coefficients of the parametrization are process-
dependent

Integrand-reduction via multivariate division:
• Trade (q1, . . . , q`) with their coordinates z ⌘ (z1, . . . , zm)

• Define the Ideal

I ⌘ hDi
1

, . . . , Dini =

8
<

:p(z) : p(z) =
X

j

hj(z)Dj(z)

9
=

;

– p(z) and hj(z) $ multivariate polynomials in z

• Take a Gröbner basis GI of I

GI = {g1, . . . , gs} such that I = hg1, . . . , gsi

• Perform the multivariate division Ni
1

...in/GI

Ni1...in =
X

k

Ni1···ik�1ik+1···in Dk + �i1...in

Ii1...in =
X

k

Ii1···ik�1ik+1···in +
�i1...in

Di1 . . .Din

· remainder of the division $ residue of Di
1

, . . . , Din
· recursive relation for the integrand decomposition

Two approaches to integrand reduction:
• Fit-on-the-cut approach

– use generic N to get the parametric form of the �’s
– determine the coefficients sampling on the cuts

• Divide-and-Conquer approach
– generate the N of the process
– compute the residues iteratively
– no multiple-cut solutions needed

From integrand to integral by integrating:

Mn =

Z
ddq1 . . . d

dq`

0

@ �i
1

···in
Di

1

. . . Din
+ . . . +

nX

k=1

�ik

Dik
+ �;

1

A

• spurious terms vanish upon integration
• other terms lead to Master Integrals (MIs)

One loop

The d-dimensional decomposition is:

From Amplitudes to observables:

• (NLO event generator) = (GoSam) + (Monte Carlo)
• Interface GoSam – Monte Carlo:

– via Binoth Les Houches Accord
– implemented for Madevent, Powheg, and Sherpa

Integrand reduction via Laurent expansion:
• Uses asymptotic limits to simplify the reconstruction
• Main features:

– fewer coefficients have to be determined
– the subtraction works at the coefficient level

· faster and more stable algorithm
• Implemented in the C++ library Ninja

– semi-numerical implementation via polynomial division
– interfaced with the GoSam package

• Application: p p ! t t̄ H + 1 jet

ed + 1894 diagrams  0
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Integrand reduction and higher rank numerators:
• Higgs production via gluon fusion

– in the mt ! 1 limit

– leads to integrands with rank = (# denominators) +1
• Extension of the algorithm

– new coefficients enter the residues �j
1

···jk
– extended sampling implemented in Samurai
– extended Laurent expansion implemented in Ninja

• Application: p p ! H + 2 jets

ed + 925 diagrams

• Application: p p ! H + 3 jets

ed + 13178 diagrams
-50

0

50

100

150

⇡/2 ⇡ 3⇡/2 2⇡

a
0

Angle ✓ around y-axis

qq̄ ! Hq0q̄0g

qq̄ ! Hqq̄g

gg ! Hqq̄g

gg ! Hggg

Higher loops

Reduction of N = 4 SYM and N = 8 SUGRA amplitudes

• Fit-on-the-cut approach
• Unitarity-based construction of the integrand
• Illustrative example:

Reduction of the photon self-energy diagrams in QED

• Divide-and-conquer approach
• d-dimensional rank-four numerators
• Massive particle in the loop
• Reduction in presence of higher powers of propagators

Maximum Cut Theorem
• Maximum Cut : cut constraining all the qi’s

– Assumption: ns non-degenerate solutions
Theorem The residue is parametrized by ns coefficients.
Theorem It exists an univariate polynomial representation
• Examples
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The path to Hjjj @ NLO

• effective Hgg-coupling:

higher rank :: r < n+2

Effective Vertices
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Towards Higgs jets in GF @ NLO
H+0j 1 NLO

gg ! H 1 NLO
H+1j 62 NLO

qq ! Hqq 14 NLO
qg ! Hqg 48 NLO

H+2j 926 NLO
qq0 ! Hqq0 32 NLO
qq ! Hqq 64 NLO
qg ! Hqg 179 NLO
gg ! Hgg 651 NLO

H+3j 13179 NLO
qq0 ! Hqq0g 467 NLO
qq ! Hqqg 868 NLO
qg ! Hqgg 2519 NLO
gg ! Hggg 9325 NLO

Computational Challenges:

I Over 10,000 diagrams

I Higher-Rank terms

I 60 Rank-7 hexagons

Complex calculations ! GoSam enhanced
grouping, optimalization through Form4.0, numerical polarization vectors, parallelization
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the rank r of the numerator can be 
larger than 
the number n of denominators

Challenges 

Mirabella Peraro P.M.
Extending the Polynomial Residues 



Hjj with GoSam + Sherpa (Amegic)

Hjjj with GoSam + Sherpa + MadGraph4

Hj, Hjj, Hjjj with GoSam2.0 + Sherpa (Comix): a new analysis

vanDeurzen Greiner Luisoni Mirabella Ossola Peraro 
vonSodenFraunhofen Tramontano & P.M.
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Tramontano & P.M.
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Total inclusive cross section with gluon fusion cuts at 8 TeV
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New results in this talk

pp æ H + 2,3 jets with GoSam + Sherpa (Comix)
I Cuts: 8 TeV, anti-kt R = 0.4 jets with pT > 30 GeV, |÷| < 4.4
I PDF: CT10nlo for LO, CT10nlo for NLO

Unless stated otherwise results in this talk use ATLAS GGF cuts above.

Scale choices
µF = µR = xQ scale variations x œ (1, 0.5, 2)

Scale A/B: µF = µR = ĤT /2, –s(mH)2–s(µR)n+1

Scale C: µF = µR = ĤT /2, –s(µR)2+n+1

Scale D: µF = µR = mH , –s(µR)2+n+1

ĤT =
Ò

m2
H + p2

T,H +
partonsÿ

i

pT,i

Unless stated otherwise results in this talk use default scale C.
3 / N
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GoSam + Ninja: more app’s

faster, 
higher accuracy,
more stable, 
no-problem with 
multiple masses

van Deurzen Luisoni Mirabella Ossola Peraro P.M. (2013)

Benchmarks: GoSam + Ninja

Process # NLO diagrams ms/event

W + 3 j dū → ν̄ee−ggg 1 411 226

Z + 3 j dd̄ → e+e−ggg 2 928 1 911

Z Z Z + 1 j uū → ZZZg 915 *12 000

W W Z + 1 j uū → W+W−Zg 779 *7 050

W Z Z + 1 j ud̄ → W+ZZg 756 *3 300

W W W + 1 j ud̄ → W+W−W+g 569 *1 800

Z Z Z Z u ū → Z Z Z Z 408 *1 070

W W W W uū → W+W−W+W− 496 *1 350

tt̄bb̄ (mb "= 0)
dd̄ → tt̄bb̄ 275 178

gg → tt̄bb̄ 1 530 5 685

tt̄+ 2 j gg → tt̄gg 4 700 13 827

Z b b̄+ 1 j (mb "= 0) dug → ue+e−bb̄ 708 *1 070

W b b̄+ 1 j (mb "= 0) ud̄ → e+νebb̄g 312 67

W b b̄+ 2 j (mb "= 0)

ud̄ → e+νebb̄ss̄ 648 181

ud̄ → e+νebb̄dd̄ 1 220 895

ud̄ → e+νebb̄gg 3 923 5387

W W b b̄ (mb "= 0)
dd̄ → νee+ν̄µµ−bb̄ 292 115

gg → νee+ν̄µµ−bb̄ 1 068 *5 300

W W b b̄+ 1 j (mb = 0) uū → νee+ν̄µµ−bb̄g 3 612 *2 000

H + 3 j in GF gg → Hggg 9 325 8 961

t t̄ Z + 1 j
uū → tt̄e+e−g 1408 1 220

gg → tt̄e+e−g 4230 19 560

t t̄ H + 1 j gg → tt̄Hg 1 517 1 505

H + 3 j in VBF uū → Hguū 432 101

H + 4 j in VBF uū → Hgguū 1 176 669

H + 5 j in VBF uū → Hggguū 15 036 29 200

Table 2: A summary of results obtained with GoSam+Ninja. Timings refer to full color- and
helicity-summed amplitudes, using an Intel Core i7 CPU @ 3.40GHz, compiled with ifort. The
timings indicated with an (*) are obtained with an Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz,
compiled with gfortran.

5.1 p p → W + 3 jets

Partonic process: dū → ν̄ee−ggg

The finite part for this process is given in the conventional dimensional regularization
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W W Z + 1 j uū → W+W−Zg 779 *7 050

W Z Z + 1 j ud̄ → W+ZZg 756 *3 300

W W W + 1 j ud̄ → W+W−W+g 569 *1 800
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8-particle with internal and external masses



Problem: what is the form of the residues?

“find the right variables encoding the cut-structure”

• Loop momentum decomposition

q + p

i

=
4

X

↵=1

x

↵

e

(ijk··· )
↵

, x

↵

= (q + p

i

) · e(ijk··· )
↵

(2.7)

cut external (p
i

) auxiliary (v
i

) �-variables (ISP’s)

5 4 0 µ

2

4 3 1 µ

2
, q · v1

3 2 2 µ

2
, q · v

i

(i = 1, 2)

2 1 3 µ

2
, q · v

i

(i = 1, . . . , 3)

1 0 4 µ

2
, q · v

i

(i = 1, . . . , 4)

cut/legs basis �-variables (ISP’s)

external (p
i

) auxiliary (v
i

)

5 4 0 µ

2

4 3 1 µ

2
, q · v1

3 2 2 µ

2
, q · v

i

(i = 1, 2)

2 1 3 µ

2
, q · v

i

(i = 1, . . . , 3)

1 0 4 µ

2
, q · v

i

(i = 1, . . . , 4)

• ISP’s = Irreducible Scalar Products:

– q-components which can variate under cut-conditions

– spurious: vanishing upon integration

– non-spurious: non-vanishing upon integration ) MI’s

• @ 1-Loop

– (q · p
i

) are ALL reducible

– ISP’s could be chosen to be ALL spurious

– n-ple cut identifies an n-point diagram

• Determine the n-point residue (�) from the n-ple cut:

the subtraction of the m-point residues with n < m  5 is necessary to guarantee

a polynomial form ! numerical fitting

• the 5-point residue doesn’t show up

• the 4-point residue doesn’t show up

• �R = reduced polynomial (⇢ �)

– 5 –

 variables

Ossola & P.M. (2011)

=    ?

Product of trees 
or chopped diagram Polynomials

The Strategy: Generalised Unitarity

• Multiple-cuts as optical filters

Replacing the original amplitude with simpler integrals fulfilling the same algebraic decomposition

= c4 Britto, Cachazo, Feng

= c4 + c3

Bern, Dixon, Dunbar, Kosower

P.M.
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Bern, Dixon, Dunbar, Kosower

Brandhuber, McNamara, Spence, Travaglini

Britto, Buchbinder, Cachazo, Feng, ⊕ P.M.

Anastasiou, Britto, Feng, Kunszt, P.M.

Forde; Badger

= c4 + c3 + c2 + c1 Glover, Williams

Britto, Feng
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integrand recurrence relation that generates the required
multi-particle pole decomposition for arbitrary ampli-
tudes, independently of the number of loops.
The algorithm treats the numerator and the denomi-

nators of any Feynman integrand, as multivariate poly-
nomials in the components of the loop variables. It uses
both the weak Nullstellensatz theorem [17] and the multi-
variate polynomial division modulo appropriate Gröbner
basis [17–20]. In the context of the integrand reduction,
univariate polynomial division has been already intro-
duced in [21] to improve the decomposition of one-loop
scattering amplitudes.

The algorithm, which is described in Section II, relies
on general properties of the loop integrand:

• When the number n of denominators is larger than
the total number of the components of the loop mo-
menta, the weak Nullstellensatz theorem [17] yields
the trivial reduction of an n-denominator integrand
in terms integrands with (n− 1) denominators.

• When n is equal or less than the total number of
components of the loop momenta, we divide the
numerator modulo the Gröbner basis of the n-ple
cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
the same decomposition.

• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.

II. MULTIVARIATE POLYNOMIAL DIVISION

In what follows, we assume 4-dimensional loop-
momenta. Extensions to higher-dimensional cases, ac-
cording to the chosen dimensional regularization scheme,
can be treated analogously - as we will show when dis-
cussing the one-loop integrand reduction.
The integrand reduction methods [5, 12, 15, 21–24, 28–

30] recast the problem of computing !-loop amplitudes
with n denominators as the reconstruction of integrand
functions of the type

Ii1···in ≡
Ni1···in(q1, . . . , q!)

Di1(q1, . . . , q!) · · ·Din(q1, . . . , q!)
, (1)

where q1, . . . , q! are integration momenta. The generic
propagator can be written as follows:

Di =





!
∑

j=1

αj qj + pi





2

−m2
i , αj ∈ {0,±1} . (2)

The numerator Ni1···in and any of the denominators Di

are polynomial in the components of the loop momenta,
say z ≡ (z1, . . . z4!), i.e.

Ii1···in =
Ni1···in(z)

Di1(z) · · ·Din(z)
. (3)

Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,

Ji1···in = 〈Di1 , · · · , Din〉

≡

{

n
∑

κ=1

hκ(z)Diκ(z) : hκ(z) ∈ P [z]

}

, (4)

where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of
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both the weak Nullstellensatz theorem [17] and the multi-
variate polynomial division modulo appropriate Gröbner
basis [17–20]. In the context of the integrand reduction,
univariate polynomial division has been already intro-
duced in [21] to improve the decomposition of one-loop
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The algorithm, which is described in Section II, relies
on general properties of the loop integrand:

• When the number n of denominators is larger than
the total number of the components of the loop mo-
menta, the weak Nullstellensatz theorem [17] yields
the trivial reduction of an n-denominator integrand
in terms integrands with (n− 1) denominators.

• When n is equal or less than the total number of
components of the loop momenta, we divide the
numerator modulo the Gröbner basis of the n-ple
cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
the same decomposition.

• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.

II. MULTIVARIATE POLYNOMIAL DIVISION

In what follows, we assume 4-dimensional loop-
momenta. Extensions to higher-dimensional cases, ac-
cording to the chosen dimensional regularization scheme,
can be treated analogously - as we will show when dis-
cussing the one-loop integrand reduction.
The integrand reduction methods [5, 12, 15, 21–24, 28–

30] recast the problem of computing !-loop amplitudes
with n denominators as the reconstruction of integrand
functions of the type

Ii1···in ≡
Ni1···in(q1, . . . , q!)

Di1(q1, . . . , q!) · · ·Din(q1, . . . , q!)
, (1)

where q1, . . . , q! are integration momenta. The generic
propagator can be written as follows:
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The numerator Ni1···in and any of the denominators Di

are polynomial in the components of the loop momenta,
say z ≡ (z1, . . . z4!), i.e.
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Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,
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where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of
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duced in [21] to improve the decomposition of one-loop
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The algorithm, which is described in Section II, relies
on general properties of the loop integrand:

• When the number n of denominators is larger than
the total number of the components of the loop mo-
menta, the weak Nullstellensatz theorem [17] yields
the trivial reduction of an n-denominator integrand
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• When n is equal or less than the total number of
components of the loop momenta, we divide the
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cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
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with (n − 1) denominators which should undergo
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• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].
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on the maximum-cuts, i.e. the cuts defined by the
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simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
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where q1, . . . , q! are integration momenta. The generic
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basis [17–20]. In the context of the integrand reduction,
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numerator modulo the Gröbner basis of the n-ple
cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
the same decomposition.

• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
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say z ≡ (z1, . . . z4!), i.e.
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Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,
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hκ(z)Diκ(z) : hκ(z) ∈ P [z]

}

, (4)

where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,
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where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of

Unless otherwise indicated, we will assume lexicographic order.

In this formalism, the n-ple cut-conditions Di1 = . . . = Din = 0, are equivalent to

g1 = . . . = gm = 0.

Di1 = . . . = Din = 0 , g1 = . . . = gm = 0

The number m of elements of the Gröbner basis is the cardinality of the basis. In

general, m is di↵erent from n. We then consider the multivariate division of Ni1···in modulo

Gi1···in (see Ch. 2, Thm. 3 of [?]),

Ni1···in(z) = �i1···in +�i1···in(z) , (2.5)

where �i1···in =
Pm

i=1Qi(z)gi(z) is a compact notation for the sum of the products of the

quotients Qi and the divisors gi. The polynomial �i1···in is the remainder of the division.

Since Gi1···in is a Gröbner basis, the remainder is uniquely determined once the monomial

order is fixed.

The term �i1···in belongs to the ideal Ji1···in , thus it can be expressed in terms of denomi-

nators, as

�i1···in =
nX

=1

Ni1···i�1i+1···in(z)Di(z) . (2.6)

The explicit form ofNi1···i�1i+1···in can be found by expressing the elements of the Gröbner

basis in terms of the denominators.

2.1 Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be written in terms of lower-point inte-

grands: that happens when the numerator can be written in terms of denominators. The

concept of reducibility can be formalized in algebraic geometry. Indeed a direct consequence

of Eqs. (2.5) and (2.6) is the following

Proposition 2.1. The integrand Ii1···in is reducible i↵ the remainder of the division modulo

a Gröbner basis vanishes, i.e. i↵ Ni1···in 2 Ji1···in.

Proposition 2.1 allows to prove

Proposition 2.2. Any n-particle integrand with n > 4` is reducible.

Proof. In this case, the system is over-constrained, namely the number n of equations is

larger than the number 4` of indeterminates. The n propagators cannot vanish simultane-

ously, i.e.

Di1(z) = · · · = Din(z) = 0 (2.7)

has no solution. Therefore, according to the weak Nullstellensatz theorem

1 =
nX

=1

w(z)Di(z) 2 Ji1···in , (2.8)
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5. The Maximum Cut Theorem

At any loop `, loops we define maximum cut as the set of vanishing denominators

D
0

= D
1

= . . . = 0

which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number

ns of solutions, each with multiplicity one.

Then,

6. Polynomial Division

Ji1...in = hg
1

, . . . , gmi ⌘
⇢ mX

=1

h̃(z)g(z) : h̃(z) 2 P (z)

�
(6.1)

Ni1...in

Di1 · · ·Din
=

nX

=1

Ni1...i�1i+1...in Di

Di1 · · ·Di�1DiDi+1 · · ·Din
+

�i1...in

Di1 · · ·Din
(6.2)
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integrand recurrence relation that generates the required
multi-particle pole decomposition for arbitrary ampli-
tudes, independently of the number of loops.
The algorithm treats the numerator and the denomi-

nators of any Feynman integrand, as multivariate poly-
nomials in the components of the loop variables. It uses
both the weak Nullstellensatz theorem [17] and the multi-
variate polynomial division modulo appropriate Gröbner
basis [17–20]. In the context of the integrand reduction,
univariate polynomial division has been already intro-
duced in [21] to improve the decomposition of one-loop
scattering amplitudes.

The algorithm, which is described in Section II, relies
on general properties of the loop integrand:

• When the number n of denominators is larger than
the total number of the components of the loop mo-
menta, the weak Nullstellensatz theorem [17] yields
the trivial reduction of an n-denominator integrand
in terms integrands with (n− 1) denominators.

• When n is equal or less than the total number of
components of the loop momenta, we divide the
numerator modulo the Gröbner basis of the n-ple
cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
the same decomposition.

• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.

II. MULTIVARIATE POLYNOMIAL DIVISION

In what follows, we assume 4-dimensional loop-
momenta. Extensions to higher-dimensional cases, ac-
cording to the chosen dimensional regularization scheme,
can be treated analogously - as we will show when dis-
cussing the one-loop integrand reduction.
The integrand reduction methods [5, 12, 15, 21–24, 28–

30] recast the problem of computing !-loop amplitudes
with n denominators as the reconstruction of integrand
functions of the type
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numerator modulo the Gröbner basis of the n-ple
cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
the same decomposition.

• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
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on general properties of the loop integrand:

• When the number n of denominators is larger than
the total number of the components of the loop mo-
menta, the weak Nullstellensatz theorem [17] yields
the trivial reduction of an n-denominator integrand
in terms integrands with (n− 1) denominators.

• When n is equal or less than the total number of
components of the loop momenta, we divide the
numerator modulo the Gröbner basis of the n-ple
cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
the same decomposition.

• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.

II. MULTIVARIATE POLYNOMIAL DIVISION

In what follows, we assume 4-dimensional loop-
momenta. Extensions to higher-dimensional cases, ac-
cording to the chosen dimensional regularization scheme,
can be treated analogously - as we will show when dis-
cussing the one-loop integrand reduction.
The integrand reduction methods [5, 12, 15, 21–24, 28–

30] recast the problem of computing !-loop amplitudes
with n denominators as the reconstruction of integrand
functions of the type

Ii1···in ≡
Ni1···in(q1, . . . , q!)

Di1(q1, . . . , q!) · · ·Din(q1, . . . , q!)
, (1)

where q1, . . . , q! are integration momenta. The generic
propagator can be written as follows:

Di =





!
∑

j=1

αj qj + pi





2

−m2
i , αj ∈ {0,±1} . (2)

The numerator Ni1···in and any of the denominators Di

are polynomial in the components of the loop momenta,
say z ≡ (z1, . . . z4!), i.e.

Ii1···in =
Ni1···in(z)

Di1(z) · · ·Din(z)
. (3)

Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,

Ji1···in = 〈Di1 , · · · , Din〉

≡

{

n
∑

κ=1

hκ(z)Diκ(z) : hκ(z) ∈ P [z]

}

, (4)

where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of
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the division. Since Gi1···in is a Gröbner basis, the remain-
der is uniquely determined once the monomial ordering
is fixed [17–20].
The term Γi1···in belongs to the ideal Ji1···in , thus it can
be expressed in terms of denominators, as

Γi1···in =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ (z) . (7)

The explicit form of Ni1···iκ−1iκ+1···in can be found by
expressing the elements of the Gröbner basis in terms of
the denominators.

A. Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be
written in terms of lower-point integrands: that happens
when the numerator can be written in terms of denom-
inators. The concept of reducibility can be formalized
in algebraic geometry. Indeed a direct consequence of
Eqs. (6) and (7) is the following

Proposition II.1 The integrand Ii1···in is reducible iff
the remainder of the division modulo a Gröbner basis
vanishes, i.e. iff Ni1···in ∈ Ji1···in .

Proposition II.1 allows to prove

Proposition II.2 Any n-particle integrand with n > 4!
is reducible.

Proof. In this case, the system is over-constrained,
namely the number n of equations is larger than the
number 4! of indeterminates. The n propagators can-
not vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (8)

has no solution. Therefore, according to the weak Null-
stellensatz theorem [17],

1 =
n
∑

κ=1

wκ(z)Diκ (z) ∈ Ji1···in , (9)

for some ωκ ∈ P [z]. Irrespective of the monomial or-
dering, a (reduced) Gröbner basis is G = {g1} = {1}.
Eq. (6) becomes

Ni1···in(z) = Ni1···in(z) × 1 ∈ Ji1···in , (10)

thus Ii1···in is reducible.

B. Integrand Recursion Formula

After substituting Eqs. (6) and (7) in Eq. (3), we
get a non-homogeneous recurrence relation for the n-
denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (11)

According to Eq. (11), Ii1···in is expressed in terms
of integrands, Ii1···iκ−1iκ+1in , with (n − 1) denomina-
tors. Ii1···iκ−1iκ+1in are obtained from Ii1···in by pinch-
ing the iκ-th denominator. The numerator of the non-
homogeneous term is the remainder ∆i1···in of the divi-
sion (6). By construction, it contains only irreducible
monomials with respect to Gi1···in , thus it is identified
with the residue at the cut (i1 . . . in).
The integrands Ii1···iκ−1iκ+1···in can be decomposed re-

peating the procedure described in Eqs. (3)-(6). In this
case the polynomial division of Ni1···iκ−1iκ+1···in has to
be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
denominators.
The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ε are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.
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the division. Since Gi1···in is a Gröbner basis, the remain-
der is uniquely determined once the monomial ordering
is fixed [17–20].
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when the numerator can be written in terms of denom-
inators. The concept of reducibility can be formalized
in algebraic geometry. Indeed a direct consequence of
Eqs. (6) and (7) is the following

Proposition II.1 The integrand Ii1···in is reducible iff
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vanishes, i.e. iff Ni1···in ∈ Ji1···in .

Proposition II.1 allows to prove

Proposition II.2 Any n-particle integrand with n > 4!
is reducible.

Proof. In this case, the system is over-constrained,
namely the number n of equations is larger than the
number 4! of indeterminates. The n propagators can-
not vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (8)

has no solution. Therefore, according to the weak Null-
stellensatz theorem [17],
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dering, a (reduced) Gröbner basis is G = {g1} = {1}.
Eq. (6) becomes

Ni1···in(z) = Ni1···in(z) × 1 ∈ Ji1···in , (10)

thus Ii1···in is reducible.

B. Integrand Recursion Formula

After substituting Eqs. (6) and (7) in Eq. (3), we
get a non-homogeneous recurrence relation for the n-
denominator integrand,

Ii1···in =
k
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κ=1

Ii1···iκ−1iκ+1in +
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. (11)

According to Eq. (11), Ii1···in is expressed in terms
of integrands, Ii1···iκ−1iκ+1in , with (n − 1) denomina-
tors. Ii1···iκ−1iκ+1in are obtained from Ii1···in by pinch-
ing the iκ-th denominator. The numerator of the non-
homogeneous term is the remainder ∆i1···in of the divi-
sion (6). By construction, it contains only irreducible
monomials with respect to Gi1···in , thus it is identified
with the residue at the cut (i1 . . . in).
The integrands Ii1···iκ−1iκ+1···in can be decomposed re-

peating the procedure described in Eqs. (3)-(6). In this
case the polynomial division of Ni1···iκ−1iκ+1···in has to
be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
denominators.
The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ε are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.

Unless otherwise indicated, we will assume lexicographic order.

In this formalism, the n-ple cut-conditions Di1 = . . . = Din = 0, are equivalent to

g1 = . . . = gm = 0.

Di1 = . . . = Din = 0 , g1 = . . . = gm = 0

The number m of elements of the Gröbner basis is the cardinality of the basis. In

general, m is di↵erent from n. We then consider the multivariate division of Ni1···in modulo

Gi1···in (see Ch. 2, Thm. 3 of [?]),

Ni1···in(z) = �i1···in +�i1···in(z) , (2.5)

where �i1···in =
Pm

i=1Qi(z)gi(z) is a compact notation for the sum of the products of the

quotients Qi and the divisors gi. The polynomial �i1···in is the remainder of the division.

Since Gi1···in is a Gröbner basis, the remainder is uniquely determined once the monomial

order is fixed.

The term �i1···in belongs to the ideal Ji1···in , thus it can be expressed in terms of denomi-

nators, as

�i1···in =
nX

=1

Ni1···i�1i+1···in(z)Di(z) . (2.6)

The explicit form ofNi1···i�1i+1···in can be found by expressing the elements of the Gröbner

basis in terms of the denominators.

2.1 Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be written in terms of lower-point inte-

grands: that happens when the numerator can be written in terms of denominators. The

concept of reducibility can be formalized in algebraic geometry. Indeed a direct consequence

of Eqs. (2.5) and (2.6) is the following

Proposition 2.1. The integrand Ii1···in is reducible i↵ the remainder of the division modulo

a Gröbner basis vanishes, i.e. i↵ Ni1···in 2 Ji1···in.

Proposition 2.1 allows to prove

Proposition 2.2. Any n-particle integrand with n > 4` is reducible.

Proof. In this case, the system is over-constrained, namely the number n of equations is

larger than the number 4` of indeterminates. The n propagators cannot vanish simultane-

ously, i.e.

Di1(z) = · · · = Din(z) = 0 (2.7)

has no solution. Therefore, according to the weak Nullstellensatz theorem

1 =
nX

=1

w(z)Di(z) 2 Ji1···in , (2.8)
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5. The Maximum Cut Theorem

At any loop `, loops we define maximum cut as the set of vanishing denominators

D
0

= D
1

= . . . = 0

which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number

ns of solutions, each with multiplicity one.

Then,

6. Polynomial Division

Ji1...in = hg
1

, . . . , gmi ⌘
⇢ mX

=1

h̃(z)g(z) : h̃(z) 2 P (z)

�
(6.1)

Ni1...in

Di1 · · ·Din
=

nX

=1

Ni1...i�1i+1...in Di

Di1 · · ·Di�1DiDi+1 · · ·Din
+

�i1...in

Di1 · · ·Din
(6.2)
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the division. Since Gi1···in is a Gröbner basis, the remain-
der is uniquely determined once the monomial ordering
is fixed [17–20].
The term Γi1···in belongs to the ideal Ji1···in , thus it can
be expressed in terms of denominators, as

Γi1···in =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ (z) . (7)

The explicit form of Ni1···iκ−1iκ+1···in can be found by
expressing the elements of the Gröbner basis in terms of
the denominators.

A. Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be
written in terms of lower-point integrands: that happens
when the numerator can be written in terms of denom-
inators. The concept of reducibility can be formalized
in algebraic geometry. Indeed a direct consequence of
Eqs. (6) and (7) is the following

Proposition II.1 The integrand Ii1···in is reducible iff
the remainder of the division modulo a Gröbner basis
vanishes, i.e. iff Ni1···in ∈ Ji1···in .

Proposition II.1 allows to prove

Proposition II.2 Any n-particle integrand with n > 4!
is reducible.

Proof. In this case, the system is over-constrained,
namely the number n of equations is larger than the
number 4! of indeterminates. The n propagators can-
not vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (8)

has no solution. Therefore, according to the weak Null-
stellensatz theorem [17],

1 =
n
∑

κ=1

wκ(z)Diκ (z) ∈ Ji1···in , (9)

for some ωκ ∈ P [z]. Irrespective of the monomial or-
dering, a (reduced) Gröbner basis is G = {g1} = {1}.
Eq. (6) becomes

Ni1···in(z) = Ni1···in(z) × 1 ∈ Ji1···in , (10)

thus Ii1···in is reducible.

B. Integrand Recursion Formula

After substituting Eqs. (6) and (7) in Eq. (3), we
get a non-homogeneous recurrence relation for the n-
denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (11)

According to Eq. (11), Ii1···in is expressed in terms
of integrands, Ii1···iκ−1iκ+1in , with (n − 1) denomina-
tors. Ii1···iκ−1iκ+1in are obtained from Ii1···in by pinch-
ing the iκ-th denominator. The numerator of the non-
homogeneous term is the remainder ∆i1···in of the divi-
sion (6). By construction, it contains only irreducible
monomials with respect to Gi1···in , thus it is identified
with the residue at the cut (i1 . . . in).
The integrands Ii1···iκ−1iκ+1···in can be decomposed re-

peating the procedure described in Eqs. (3)-(6). In this
case the polynomial division of Ni1···iκ−1iκ+1···in has to
be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
denominators.
The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ε are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.

n-denominator
integrand

(n-1)-denominator
integrand

remainder = residue
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4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator

i
(/p+m)

p2 �m2 � i0
(4.3)

1

p2 �m2 � i0
! �(p2 �m2) ) (/p+m) !

X

spin�s

us(p) ūs(p) (4.4)

4.3 Phase-space

d4� ⌘ d4`1 d4`2 �(4)
⇣
`1 + `2 � P12

⌘
�(+)

⇣
`21 �m2

1

⌘
�(+)

⇣
`22 �m2

2

⌘
(4.5)

4.4 BCFW

(qi � zi⌘)
2 �m2

i = 0 , zi =
q2i �m2

i

2⌘.qi
, (qi � zj⌘)

2 �m2
i = 2⌘.qi(zi � zj) (4.6)

(�1)
1

q21 �m2
1

1

q22 �m2
2

· · · 1

q2n �m2
n
=

1

q21 �m2
1

1

(q2 � z1⌘)2 �m2
2

· · · 1

(qn � z1⌘)2 �m2
n

+
1

(q1 � z2⌘)2 �m2
1

1

q22 �m2
2

· · · 1

(qn � z2⌘)2 �m2
n

+ . . . . . .

+
1

(q1 � zn⌘)2 �m2
1

1

(q2 � zn⌘)2 �m2
2

· · · 1

q2n �m2
n

(4.7)

I
dz

z(z � z1)(z � z2) · · · (z � zn)
= 0 (4.8)

(�1)

z1z2 · · · zn
=

1

z1(z1 � z2) · · · (z1 � zn)

+
1

(z2 � z1)z2 · · · (z2 � zn)
+ . . . . . .

+
1

(zn � z1)(zn � z2) · · · (zn � zn�1)zn
(4.9)
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  all orders (any number of loops and legs)
  any topology (planar and non-planar)
  all kinematics (massless and massive)

n-line 
graph

(n-1)-line 
graph

coefficient 
product of simpler amplitudes

Master functions

  high-power of denominators  



2.1 for CERN

Ni1···in =
n
X

1=i1<<imax

�i1i2...imax

n
Y

h 6=i1i2...imax

Dh

+
n
X

1=i1<<(imax�1)

�i1i2...(imax�1)

n
Y

h 6=i1i2...(imax�1)

Dh

+
n
X

1=i1<<(imax�2)

�i1i2...(imax�2)

n
Y

h 6=i1i2...(imax�2)

Dh

+ · · · · · · · · ·

+
n
X

1=i1<i2

�i1i2

n
Y

h 6=i1i2

Dh

+
n
X

1=i1

�i1

n
Y

h 6=i1

Dh

+Q;

n
Y

h=1

Dh , (2.22)

Ii1···in =
Ni1···in

Di1Di2 · · ·Din
=

n
X

1=i1<<imax

�i1i2...imax

Di1Di2 · · ·Dimax

+
n
X

1=i1<<imax�1

�i1i2...imax�1

Di1Di2 · · ·Dimax�1

+
n
X

1=i1<<imax�2

�i1i2...imax�2

Di1Di2 · · ·Dimax�2

· · · · · · · · ·

+
n
X

1=i1<i2

�i1i2

Di1Di2

+
n
X

1=i1

�i1

Di1

+Q; (2.23)

Ii1···in =
n
X

1=i1<<imax

�i1i2...imax

Di1Di2 · · ·Dimax

+
n
X

1=i1<<imax�1

�i1i2...imax�1

Di1Di2 · · ·Dimax�1

+
n
X

1=i1<<imax�2

�i1i2...imax�2

Di1Di2 · · ·Dimax�2

+ · · · · · ·+
n
X

1=i1<i2

�i1i2

Di1Di2
+

n
X

1=i1

�i1

Di1
+Q;(2.24)
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The Maximum-Cut Theorem
4. The Maximum-cut Theorem

At ` loops, in four dimensions, we define a maximum-cut as a (4`)-ple cut

Di1 = Di2 = · · · = Di4` = 0 ,

which constrains completely the components of the loop momenta. In four dimensions

this implies the presence of four constraints for each loop momenta. We assume that, in

non-exceptional phase-space points, a maximum-cut has a finite number ns of solutions,

each with multiplicity one. Under this assumption we have the following

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial para-

matrised by ns coe�cients, which admits a univariate representation of degree (ns � 1).

Proof. Let us parametrize the propagators using 4` variables z = (z1, . . . z4`). In this

parametrization, the solutions of the maximum-cut read,

z(i) =
⇣
z

(i)
1 , . . . , z

(i)
4`

⌘
, with i = 1, . . . , ns .

Let Ji1···i4` be the ideal generated by the on-shell denominators, Ji1···i4` = hDi1 , . . . , Di4`i .
According to the assumptions, the number ns of the solutions is finite, and each of them

has multiplicity one, therefore Ji1···i4` is zero-dimensional and radical 1, In this case, the

Finiteness Theorem ensures that the remainder of the division of any polynomial modulo

Ji1···i4` can be parametrised exactly by ns coe�cients.

Moreover, up to a linear coordinate change, we can assume that all the solutions of the

system have distinct first coordinate z1, i.e. z

(i)
1 6= z

(j)
1 8 i 6= j. We observe that Ji1···i4`

and z1 are in the Shape Lemma position therefore a Gröbner basis for the lexicographic

order z1 < z2 < · · · < zn is Gi1···i4` = {g1, . . . , g4`}, in the form

8
>>>><

>>>>:

g1(z) = f1(z1)

g2(z) = z2 � f2(z1)
...

g4`(z) = z4` � f4`(z1) .

The functions fi are univariate polynomials in z1. In particular f1 is a rank-ns square-free

polynomial

f1(z1) =
nsY

i=1

⇣
z1 � z

(i)
1

⌘
,

i.e. it does not exhibits repeated roots. The multivariate division of Ni1···ı4` modulo Gi1···i4`
leaves a remainder �i1···i4` which is a univariate polynomial in z1 of degree (ns � 1) in

accordance with the Finiteness Theorem.

1
Given an ideal J , the radical of J is

p
J ⌘ {f 2 P [z] : 9 s 2 N, fs 2 J }. J is radical i↵ J =

p
J .
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(�1)

z
1

z
2

· · · zn
=

1

z
1

(z
1

� z
2

) · · · (z
1

� zn)

+
1

(z
2

� z
1

)z
2

· · · (z
2

� zn)
+ . . . . . .

+
1

(zn � z
1

)(zn � z
2

) · · · (zn � zn�1

)zn
(4.9)

5. The Maximum Cut Theorem

At any loop `, loops we define maximum cut as the set of vanishing denominators

D
0

= D
1

= . . . = 0

which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number

ns of solutions, each with multiplicity one.

Then,

– 7 –

0-dimensional
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IV. THE MAXIMUM-CUT THEOREM

At ! loops, in four dimensions, we define a maximum-
cut as a (4!)-ple cut

Di1 = Di2 = · · · = Di4! = 0 , (23)

which constrains completely the components of the loop
momenta. In four dimensions this implies the presence of
four constraints for each loop momenta. We assume that,
in non-exceptional phase-space points, a maximum-cut
has a finite number ns of solutions, each with multiplicity
one. Under this assumption we have the following

Theorem IV.1 (Maximum cut) The residue at the
maximum-cut is a polynomial paramatrised by ns coeffi-
cients, which admits a univariate representation of degree
(ns − 1).

Proof. Let us parametrize the propagators using 4! vari-
ables z = (z1, . . . z4!). In this parametrization, the solu-
tions of the maximum-cut read,

z(i) =
(

z
(i)
1 , . . . , z

(i)
4!

)

with i = 1, . . . , ns . (24)

Let Ji1···i4! be the ideal generated by the on-shell de-
nominators, Ji1···i4! = 〈Di1 , . . . , Di4!〉 .
According to the assumptions, the number ns of the so-
lutions of (23) is finite, and each of them has multiplicity
one, therefore Ji1···i4! is zero-dimensional [20, 33] and
radical [34] [17]. In this case, the Finiteness Theorem
[17, 20] ensures that the remainder of the division of any
polynomial modulo Ji1···i4! can be parametrised exactly
by ns coefficients.

Moreover, up to a linear coordinate change, we can
assume that all the solutions of the system have distinct

first coordinate z1, i.e. z
(i)
1 $= z

(j)
1 ∀ i $= j. We observe

that Ji1···i4! and z1 are in the Shape Lemma position [19,
20, 25, 26], therefore a Gröbner basis for the lexicographic
order z1 < z2 < · · · < zn is Gi1···i4! = {g1, . . . , g4!}, in
the form



















g1(z) = f1(z1)
g2(z) = z2 − f2(z1)

...
g4!(z) = z4! − f4!(z1)

(25)

The functions fi are univariate polynomials in z1. In
particular f1 is a rank-ns square-free polynomial [25],

f1(z1) =
ns
∏

i=1

(

z1 − z
(i)
1

)

, (26)

i.e. it does not exhibits repeated roots. The multivari-
ate division of Ni1···ı4! modulo Gi1···i4! leaves a remainder
∆i1···i4! which is a univariate polynomial in z1 of degree
(ns−1) [26], in accordance with the Finiteness Theorem.

The maximum-cut theorem ensures that the
maximum-cut residue, at any loop, is completely

FIG. 1. The on-shell diagrams in the picture are exam-
ples of maximum-cuts. The first diagram in the left column
represents the 5ple-cut of the 5-point one-loop dimensionally
regulated amplitude. All the other on-shell diagrams are con-
sidered in four dimensions. For each of them, the general
structure of the residue ∆ (according to the Shape Lemma)
and the corresponding value of ns are provided.

determined by the ns distinct solutions of the cut-
conditions. In particular it can be reconstructed by
sampling the integrand on the solutions of the maximum
cut itself.
At one loop and in (4 − 2ε)-dimensions, the 5-ple

cuts are maximum-cuts. The remarkably simple struc-
ture of the Gröbner basis in Eq. (16) is dictated by the
maximum-cut theorem. Moreover in this case ns = 1,
thus the residue in Eq. (17) is a constant.
The structures of the residues of the maximum cut,

together with the corresponding values of ns, for a set
of one-, two-, and three-loop diagrams are collected in
Figure 1.

The calculations of Sections III and IV have been
carried out using the package S@M [35] and the func-
tions GroebnerBasis and PolynomialReduce of Math-

ematica, respectively needed for the generation of the
Gröbner basis and the polynomial division.

V. CONCLUSIONS

We presented a new algebraic approach, where the
evaluation of scattering amplitudes is addressed by using
multivariate polynomial division, with the components
of the loop-momenta as indeterminates. We found a re-
currence relation to construct the integrand decomposi-
tion of arbitrary scattering amplitudes, independently of
the number of loops. The recursive algorithm is based
on the Weak Nullstellensatz Theorem and on the divi-
sion modulo the Gröbner basis associated to all possi-
ble multi-particle cuts. Using this technique, we red-
erived the well-known one-loop integrand decomposition
formula. Finally, by means of the Finiteness Theorem
and of the Shape Lemma, we proved that the residue at
the maximum-cuts is parametrised exactly by a number
of coefficients equal to the number of solutions of the cut
itself.

Examples of Maximum-Cuts

Maximal cuts

March 16, 2016

Since we always have more than four external legs, all momenta are
parametrised as

qαi = qα[4] i + µα
i ,

qi · qj = q[4] i · q[4] j + µij. (1)

and four-dimensional vectors are decomposed in a basis build with four ex-
ternal momenta.

1 Two loops

p1 p8

k1 k2

p1

p8

k1

k1 − k2

Figure 1: Maximal cuts at two loops

The four-dimensional loop momenta are parametrised as

qα[4] 1 =
4∑

i=1

xip
α
i , qα[4] 2 =

4∑

i=1

yip
α
i . (2)

Given the set of denominators

D0 =q21 +m2
0, D6 = (q2 + p1...5)

2 +m2
6,

D1 =(q1 + p1)
2 +m2

1, D7 = (q2 + p1...6)
2 +m2

7,

D2 =(q1 + p12)
2 +m2

2 D8 = (q2 + p1...7)
2 +m2

8,

D3 =(q1 + p123)
2 +m2

3, D9 = q22 +m2
9,

D4 =(q1 + p1...4)
2 +m2

4, D10 = (q1 − q2)
2 +m2

10

D5 =(q2 + p1...4)
2 +m2

5, D11 = (q1 − q2 + p1...7)
2 +m2

11, (3)

1

with

pk...l =
l∑

m=k

pl (4)

we define the two maximal topologies

I0···8 9 10 =
N0···8 9 10

D0 · · · D8D9D10

I0···8 10 11 =
N0···8 10 11

D0 · · · D8D10D11
, (5)

corresponding, respectively, to the planar and non-planar graph of Figure 1.
Labelling with

z = {x1, . . . x4, y1, . . . y4, µ11, µ22, µ12}, (6)

we find that both Gröebner basis G0···8 9 10 and G0···8 10 11 have the form

gi(z) = κi + zi, i = 1, . . . , 11 (7)

and, consistently, the polynomial division return constant remainders.

2 Three loops

k1 − k2

k3k1

p1 p12

Figure 2: Maximal cuts at three loops

the four-dimensional loop momenta are parametrised as

qα[4] 1 =
4∑

i=1

xip
α
i , qα[4] 2 =

4∑

i=1

yip
α
i qα[4] 3 =

4∑

i=1

zip
α
i . (8)

The maximal(planar) topology of Figure 2

I0···17 =
N0···17

D0 · · · D17

(9)

2



Application at one-loop

Choice of 4-dimensional basis for an m-point residue

e2

1

= e2

2

= 0 , e
1

· e
2

= 1 , e2

3

= e2

4

= �m4

, e
3

· e
4

= �(1 � �m4

)

Coordinates: z = (z
1

, z
2

, z
3

, z
4

, z
5

) ⌘ (x
1

, x
2

, x
3

, x
4

, µ2)

qµ
4-dim

= �pµi
1

+ x
1

eµ
1

+ x
2

eµ
2

+ x
3

eµ
3

+ x
4

eµ
4

, q2 = q2

4-dim

� µ2

Generic numerator

Ni
1

···im =
X

j
1

,...,j
5

↵~j z j
1

1

z j
2

2

z j
3

3

z j
4

4

z j
5

5

, (j
1

. . . j
5

) such that rank(Ni
1

···im )  m

Residues

�i
1

i
2

i
3

i
4

i
5

= c
0

�i
1

i
2

i
3

i
4

= c
0

+ c
1

x
4

+ µ2(c
2

+ c
3

x
4

+ µ2c
4

)

�i
1

i
2

i
3

= c
0

+ c
1

x
3

+ c
2

x2

3

+ c
3

x3

3

+ c
4

x
4

+ c
5

x2

4

+ c
6

x3

4

+ µ2(c
7

+ c
8

x
3

+ c
9

x
4

)

�i
1

i
2

= c
0

+ c
1

x
2

+ c
2

x
3

+ c
3

x
4

+ c
4

x2

2

+ c
5

x2

3

+ c
6

x2

4

+ c
7

x
2

x
3

+ c
9

x
2

x
4

+ c
9

µ2

�i
1

= c
0

+ c
1

x
1

+ c
2

x
2

+ c
3

x
3

+ c
4

x
4

It can be easily extended to higher-rank numerators
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4.4 d-dimensional integrand decomposition

one can rewrite this as:

An =

n�1
X

(ijk`)

⇢

c(ijk`)
4,0 Iijk` + c(ijk`)

4,4 Iijk`[µ
4
]

�

+

n�1
X

(ijk)

⇢

c(ijk)
3,0 Iijk + c(ijk)

3,7 Iijk[µ
2
]

�

+

n�1
X

(ij)

⇢

c(ij)
2,0 Iij + c(ij)

2,1 Iij [(q + pi) · e2] + c(ij)
2,2 Iij [((q + pi) · e2)

2
] + c(ij)

2,9 Iij [µ
2
]

�

+

n�1
X

i

c(i)
1,0Ii .(4.90)

[Need to include the two bubbles because of possibility of k2
= 0.] Integrals with µ2 in the

numerator can be traded for higher dimensional ones using (see appendix B.1)

Ii1···ik [(µ
2
)

rf(q, µ2
)] =

1

⇡r

r
Y

=1

✓

 � 3 +

d

2

◆

Z

dd+2r q̄
f(q, µ2

)

Di1 · · · Dik
. (4.91)

=r  n c4,0 + c4,4 d + 4 + c3,0

+ c2,0

+ c2,9 d + 2 + c1,0

+ c2,1

+ c2,2

+ c3,7 d+ 2

r=2

r=1

Figure 4.3.: Depiction of the decomposition of a generic integral in a set of master integrals

Equation 4.88 holds at the integral level. In order to get a similar expression at the integrand
level, it is not allowed to simply remove the integral signs, because this would ignore the
overal integration constants of all the individual integrals. Rather, one needs to add so called
spurious functions, functions that vanish upon integration. Using the notation:

Z

ddq̄
f s
ijk..(q̄)

DiDj ..
= 0 (4.92)

we can write the corresponding equation at the integrand level:

A(q̄) =

X

(ijk`m)

c5,0µ2
+ f s

ijk`m(q̄)

DiDjDkDlDm

+

X

(ijk`)

c4,0 + c4,4µ4
+ f s

ijk`(q̄)

DiDjDkDl
+

X

(ijk)

c3,0 + c3,7µ2
+ f s

ijk(q̄)

DiDjDk

+

X

(ij)

c2,0 + c2,1w + c2,2w2
+ c2,9µ2

+ f s
ij(q̄)

DiDj
+

X

(i)

c1,0 + f s
i (q̄)

Di

(4.93)
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1 Transverse space for Feynman integrals

In this Section we study a class of multiple integrals which are typically encountered in loop

calculations in the framework of dimensional regularisation. We show that, with a suitable

choice of n-dimensional spherical coordinates, the integration over angular variables, which

will be later related to the components of loop momenta transverse to the external kine-

matics, can be completely reduced to an algebraic expansion in terms of a particular set of

orthogonal polynomials, known as Gegenbauer polynomials, and to the iterative application

of their orthogonality relation.

The derivation of all results presented in this Section can be found in Appendix A.

We begin with an integral of the type

I1 =

∫

dnλ I1(λ), (1.1)

where λ is a vector of a n-dimensional Euclidean space, which we assume to be decomposed

with respect to an orthonormal basis {vi} as

λ =
n
∑

i=1

aivi, vi · vj = δij . (1.2)

Besides being a function of λ2 = λ · λ, the most general integrand we will encounter in

one-loop calculations can show a dependence of a subset of k < n − 1 components of λ,

which can be chosen, without loss of generality, to correspond to {a1, a2, . . . , ak},

I1(λ) ≡ I1(λ2, {a1, a2, . . . , ak}). (1.3)

Under this assumption, the integral (1.1) can be conveniently parametrised in terms of

spherical coordinates in n dimensions as

I1 =
π

n−k

2

Γ
(

n−k
2

)

∫ ∞

0
dλ2(λ2)

n−2
2

k
∏

i=1

∫ 1

−1
d cos θi(sin θi)

n−i−2I1(λ2, {cos θj, sin θj}), (1.4)

where the expression of the components of λ which appear in the integrand is given by the

usual change of variables


























a1 = λ cos θ1

a2 = λ sin θ1 cos θ2

· · ·
ak = λ cos θk

∏k−1
i=1 sin θi.

(1.5)

This kind of parametrisation admits a straightforward generalisation to integrals oc-

curring at multi-loop level.

Consider, for instance, an integral of the type

I2 =

∫

dnλ1d
n
λ2I2(λ1,λ2), (1.6)
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Peraro Primo P.M. (to appear) 

1 Transverse space for Feynman integrals
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@ 2-loop

1 Transverse space for Feynman integrals
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will be later related to the components of loop momenta transverse to the external kine-
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orthogonal polynomials, known as Gegenbauer polynomials, and to the iterative application

of their orthogonality relation.

The derivation of all results presented in this Section can be found in Appendix A.
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where we assume both vectors λi to be decomposed in terms of an orthonormal basis {vi},

λ1 =
n
∑

i=1

aivi, λ2 =
n
∑

i=1

bivi. (1.7)

For general two-loop applications, we are interested in integrands depending on the scalar

products λij = λi ·λj as well as on subset of k < n− 1 components of both vectors, which

can be freely chosen to be {a1, a2, . . . , ak} and {b1, b2, . . . , bk},

I2(λ1,λ2) = I2(λij , {a1, a2, . . . , ak}, {b1, b2, . . . , bk}). (1.8)

As for the previous case, it is convenient the express the integrals over the n-dimensional

spaces in terms of spherical coordinates,

I2 =
(2π)n−k−1

2Γ (n− k − 1)

∫ ∞

0
dλ11(λ11)

n−2

2

∫ ∞

0
dλ22(λ22)

n−2

2

∫ 1

−1
d cos θ12(sin θ12)

n−3×

∫ 1

−1

k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
n−i−2(sin θi+12)

n−i−3I2(λmm, {cos θmn, sin θmn}),

(1.9)

where

cos θ12 =
λ12√
λ11λ22

, (1.10)

whereas the relation between the angular variables θi1,2 and the components of λ1 and λ2
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Integrating over Transverse Angles

Spherical Coordinates

@ higher-loop... as well
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Gegenbauer Polynomials

As a consequence, the integral over all angular variables θi can be immediately evaluated

by means of the orthogonality relation (B.3) satisfied by such polynomials,

∫ 1

−1
d cos θ(sin θ)2α−1C(α)

n (cos θ)C(α)
m (cos θ) = δmn

21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
. (1.13)

After this operation is performed, all spurious terms are automatically set to zero and non-

vanishing contributions are reduced, apart from constant prefactors, to additional powers

of λ2 in the numerator.

In the same way, after the change of variables (1.11)-(1.12), the integrand I2 turns

into a polynomial in {cos θij, sin θij}, i != 1 ∧ i != 2, with coefficients depending on λ11, λ22

and θ12, and the integration over all angular variables θij != θ12 can be again performed

by using the orthogonality relation (1.13), which automatically sets to zero spurious terms

and reduce non-vanishing contributions to additional powers of λij .

2 One-loop integrals

We consider a general dimensional regulated n-point one loop integral of the type

Idn[N ] =

∫

ddq

πd/2

N (q)
∏n−1

i=0 Di

, (2.1)

with an arbitrary tensor numerator N (q) and denominators given by

Di =
(

q +
i

∑

j=0

pj
)2

+m2
i , p0 = 0, (2.2)

being {p1, ..., pn−1} the set of external momenta. A common way of parametrizing the

d-dimensional loop momentum consists in splitting it into

qα = qα[4] + µα, (2.3)

where qα[4] is a vector of the physical four-dimensional space and µα belongs to the orthogonal

(d− 4)-dimensional subspace, which is assumed to have an euclidean metric δij , so that

µ · µ = µ2 (µ2 > 0), q2 = q2[4] + µ2. (2.4)

Since all external momenta are four-dimensional,

pi · µ = 0, (2.5)

the denominators (2.2) can be written as

Di =
(

q[4] +
i

∑

j=0

pj
)2

+ µ2 +m2
i , (2.6)
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B Gegenbauer polynomials

In this Appendix we collect the most relevant properties of Gegenbauer polynomials.

Gegenbauer polynomials C(α)
n (x) are orthogonal polynomials over the interval [−1, 1] with

respect to the weight function

ωα(x) = (1− x2)α−
1
2 , (B.1)

and they can be defined through the generating function

1

(1− 2xt+ t2)α
=

∞
∑

n=1

C(α)
n (x)tn. (B.2)

These polynomials obey the orthogonality relation

∫ 1

−1
dx ωα(x)C

(α)
n (x)C(α)

m (x) = δmn
21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
. (B.3)
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Orthogonal polynomials

Orthogonality condition

  Integration over Transverse Angles: trivialized @ all-loop!
Peraro Primo P.M.   



As a consequence, the integral over all angular variables θi can be immediately evaluated

by means of the orthogonality relation (B.3) satisfied by such polynomials,

∫ 1

−1
d cos θ(sin θ)2α−1C(α)

n (cos θ)C(α)
m (cos θ) = δmn

21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
. (1.13)

After this operation is performed, all spurious terms are automatically set to zero and non-

vanishing contributions are reduced, apart from constant prefactors, to additional powers

of λ2 in the numerator.

In the same way, after the change of variables (1.11)-(1.12), the integrand I2 turns

into a polynomial in {cos θij, sin θij}, i != 1 ∧ i != 2, with coefficients depending on λ11, λ22

and θ12, and the integration over all angular variables θij != θ12 can be again performed

by using the orthogonality relation (1.13), which automatically sets to zero spurious terms

and reduce non-vanishing contributions to additional powers of λij .

2 One-loop integrals

We consider a general dimensional regulated n-point one loop integral of the type

Idn[N ] =

∫

ddq

πd/2

N (q)
∏n−1

i=0 Di

, (2.1)

with an arbitrary tensor numerator N (q) and denominators given by

Di =
(

q +
i

∑

j=0

pj
)2

+m2
i , p0 = 0, (2.2)

being {p1, ..., pn−1} the set of external momenta. A common way of parametrizing the

d-dimensional loop momentum consists in splitting it into

qα = qα[4] + µα, (2.3)

where qα[4] is a vector of the physical four-dimensional space and µα belongs to the orthogonal

(d− 4)-dimensional subspace, which is assumed to have an euclidean metric δij , so that

µ · µ = µ2 (µ2 > 0), q2 = q2[4] + µ2. (2.4)

Since all external momenta are four-dimensional,

pi · µ = 0, (2.5)

the denominators (2.2) can be written as

Di =
(

q[4] +
i

∑

j=0

pj
)2

+ µ2 +m2
i , (2.6)
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and, introducing spherical coordinates for the (d − 4)-subspace, the loop integral (2.1)

becomes

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

d4q[4]

∫ ∞

0
dµ2(µ2)

d−6
2

N (q[4], µ
2)

∏n−1
i=0 Di

. (2.7)

For practical purposes, it is often convenient to decompose the four-dimensional part of the

loop momentum into a specific basis of vectors {eαi },

qα[4] =
4

∑

i=1

xie
α
i , (2.8)

and rewrite (2.7) as

Idn[N ] =
K

π2Γ
(

d−4
2

)

∫ ∞

−∞

4
∏

i=1

dxi

∫ ∞

0
dµ2(µ2)

d−6
2

N (xi, µ2)
∏n−1

i=0 Di

, (2.9)

where K is the Jacobian factor

K =

√

det

(∂qµ[4]
∂xi

∂q[4]µ
∂xj

)

. (2.10)

The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)
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We observe that, because of (2.14), when the integral (2.1) is written in terms of the

variables {qα[k],λ
α},

Idn[N ] =

∫

dkq[k]
πd/2

∫

dλd−k N (q)
∏n−1

i=0 Di

, (2.15)

all denominators become independent from the transverse components of qα,

Di =
(

q[k] +
i

∑

j=0

pj
)2

+ λ2 +m2
i . (2.16)

As a consequence, the integrand satisfies the requirement (1.3) since, besides being a func-

tion of qα[k], it only depends on λ2 and on a finite subset of components of λα, which

correspond to the transverse directions {xk+1, ..., x4},

N (q) ≡ N (qα[k],λ
2, {xk+1, ..., x4}). (2.17)

Therefore, the integral over the (d− k)-dimensional subspace is exactly of the type (1.1) so

that, if we introduce spherical coordinates


























xk+1 = λ cos θ1

xk+2 = λ sin θ1 cos θ2

· · ·
x4 = λ cos θ4−k

∏3−k
i=1 sin θi,

(2.18)

we can express the one-loop integral, analogously to Eq. (1.4), as

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

dkq[k]

∫ ∞

0
dλ2(λ2)

d−k−2
2

4−k
∏

i=1

∫ 1

−1
d cos θi(sin θi)

d−k−i−2 N (q)
∏n−1

i=0 Di

.

(2.19)

Moreover, since the denominators are completely independent from the transverse variables,

they can only appear polynomially in the numerator. Hence, as we have already observed

in Section 1, any dependence of the integrand on {xk+1, ..., x4} can be immediately inte-

grated by expanding the numerator in terms of Gegenbauer polynomials and by using the

orthogonality relation (1.13). This procedure allows to reduce any tensor Feynman integral

as a linear combination of integrals whose numerators only depends of the components of

the loop momentum lying on the space spanned by the external momenta.

In following, we will specify the parametrization (2.19) for all kinematics configurations

with n ≤ 4 and we will provide some explicit examples of integrals over the transverse

components of the loop momentum.

2.1 Four-point integrals

For a general four-point integral,

Id4 [N ] =

∫

ddq

πd/2

N (q)

D0D1D2D3
, (2.20)
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Therefore, the integral over the (d− k)-dimensional subspace is exactly of the type (1.1) so

that, if we introduce spherical coordinates


























xk+1 = λ cos θ1

xk+2 = λ sin θ1 cos θ2

· · ·
x4 = λ cos θ4−k

∏3−k
i=1 sin θi,

(2.18)

we can express the one-loop integral, analogously to Eq. (1.4), as

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

dkq[k]

∫ ∞

0
dλ2(λ2)

d−k−2
2

4−k
∏

i=1

∫ 1

−1
d cos θi(sin θi)

d−k−i−2 N (q)
∏n−1

i=0 Di

.

(2.19)

Moreover, since the denominators are completely independent from the transverse variables,

they can only appear polynomially in the numerator. Hence, as we have already observed

in Section 1, any dependence of the integrand on {xk+1, ..., x4} can be immediately inte-

grated by expanding the numerator in terms of Gegenbauer polynomials and by using the

orthogonality relation (1.13). This procedure allows to reduce any tensor Feynman integral

as a linear combination of integrals whose numerators only depends of the components of

the loop momentum lying on the space spanned by the external momenta.

In following, we will specify the parametrization (2.19) for all kinematics configurations

with n ≤ 4 and we will provide some explicit examples of integrals over the transverse

components of the loop momentum.

2.1 Four-point integrals

For a general four-point integral,

Id4 [N ] =

∫

ddq

πd/2

N (q)

D0D1D2D3
, (2.20)
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i=0 Di
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orthogonality relation (1.13). This procedure allows to reduce any tensor Feynman integral

as a linear combination of integrals whose numerators only depends of the components of

the loop momentum lying on the space spanned by the external momenta.

In following, we will specify the parametrization (2.19) for all kinematics configurations

with n ≤ 4 and we will provide some explicit examples of integrals over the transverse

components of the loop momentum.

2.1 Four-point integrals

For a general four-point integral,

Id4 [N ] =

∫

ddq
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N (q)
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with denominators given by

D0 = q2 +m2
0

D1 = (q + p1)
2 +m2

1,

D2 = (q + p1 + p2)
2 +m2

2,

D3 = (q + p1 + p2 + p3)
2 +m2

3, (2.21)

we can define a basis {eαi } containing one single transverse direction eα4 such that

pi · e4 = 0 ∀i = 1, 2, 3. (2.22)

Therefore, according to (2.11), we can define the vectors

qα[3] =
3

∑

i=1

xie
α
i , λα = x4e

α
4 + µα, (2.23)

and decompose the d-dimensional loop momentum as

qα = qα[3] + λα, q2 = q2[3] + λ2. (2.24)

In this parametrization, the four-point integral becomes

Id4 [N ] =

∫

d3q[3]
πd/2

∫

dd−3λ
N (q[3],λ

2, x4)

D0D1D2D3
. (2.25)

and, since all denominators are now independent from the transverse component x4,

D0 = q2[3] + λ2 +m2
0

D1 = (q2[3] + p1)
2 + λ2 +m2

1,

D2 = (q2[3] + p1 + p2)
2 + λ2 +m2

2,

D3 = (q2[3] + p1 + p2 + p3)
2 + λ2 +m2

3. (2.26)

we can introduce spherical coordinates

x4 = λ cos θ1 (2.27)

and obtain, according to (2.19) for k = 3,

Id4 [N ] =
1

π2Γ
(

d−4
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−5
2

∫ 1

−1
d cos θ1(sin θ1)

d−6N (q[3],λ
2, cos θ1)

D0D1D2D3
.

(2.28)

The numerator of any Feynman integral is a polynomial in x4 (and hence in cos θ1), so that

the angular integration can be always reduced to the orthogonality relation (1.13).

In particular, for the case of the scalar four-point integral we obtain

Id4 [1] =
1

π3/2Γ
(

d−3
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−5
2

1

D0D1D2D3
. (2.29)
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In particular, for the case of the scalar four-point integral we obtain

Id4 [1] =
1

π3/2Γ
(

d−3
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−5
2

1

D0D1D2D3
. (2.29)

– 7 –

 

Moreover, as we recall in Appendix B, all odd powers of x4 are expressed in terms of Gegen-

bauer polynomials with different indices and, therefore, vanish by orthogonality, whereas

even powers of x4 give rise to non zero contributions. As an example, which will be later

become useful, let us consider the integrals Let’s consider, as an example, the integral

Id4 [x
2
4 ] =

1

π2Γ
(

d−4
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−3
2

∫ 1

−1
d cos θ1(sin θ1)

d−6 cos2 θ1
D0D1D2D3

, (2.30a)

Id4 [x
4
4 ] =

1

π2Γ
(

d−4
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−1
2

∫ 1

−1
d cos θ1(sin θ1)

d−6 cos4 θ1
D0D1D2D3

, (2.30b)

where we used (2.27).

By expressing powers of cos θ1 in terms of Gegenbauer polynomials,

cos2 θ1 =
1

(d− 5)2
[

C
(d−5

2
)

1 (cos θ1)
]2
, (2.31a)

cos4 θ1 =
1

(d− 3)2

[

C
(d−5

2
)

0 (cos θ1) +
4

(d− 5)2
C

d−5
2

2 (cos θ1)

]2

(2.31b)

we can evaluate the angular integrals by means of the orthogonality relations and obtain

Id4 [x
2
4 ] =

1

d− 3
Id4 [λ

2 ] =
1

2
Id+2
4 [1], (2.32a)

Id4 [x
4
4 ] =

3

(d− 3)(d − 1)
Id4 [λ

4 ] =
3

4
Id+4
4 [1]. (2.32b)

where, in the second equality, we have identified additional powers of λ2 in the numerator

with higher-dimensional scalar integrals, has it can be easily checked from the explicit

expression of the d-dimensional integral (2.29).

Similar results can be obtained for higher rank numerators.

2.2 Three-point integrals

Given an arbitrary three-point integral,

Id3 [N ] =

∫

ddq

πd/2

N (q)

D0D1D2
, (2.33)

with

D0 = q2 +m2
0

D1 = (q + p1)
2 +m2

1,

D2 = (q + p1 + p2)
2 +m2

2, (2.34)

we can build a basis of the four-dimensional space containing two transverse directions eα3,4,

pi · ej = 0 i = 1, 2, j = 3, 4, (2.35)

which allow us to define the vectors

qα[2] =
2

∑

i=1

xie
α
i , λα =

4
∑

i=3

xie
α
i + µα, (2.36)
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   Gegenbauer integration produces powers of   

where we assume both vectors λi to be decomposed in terms of an orthonormal basis {vi},

λ1 =
n
∑

i=1

aivi, λ2 =
n
∑

i=1

bivi. (1.7)

For general two-loop applications, we are interested in integrands depending on the scalar

products λij = λi ·λj as well as on subset of k < n− 1 components of both vectors, which

can be freely chosen to be {a1, a2, . . . , ak} and {b1, b2, . . . , bk},

I2(λ1,λ2) = I2(λij , {a1, a2, . . . , ak}, {b1, b2, . . . , bk}). (1.8)

As for the previous case, it is convenient the express the integrals over the n-dimensional

spaces in terms of spherical coordinates,

I2 =
(2π)n−k−1

2Γ (n− k − 1)

∫ ∞

0
dλ11(λ11)

n−2

2

∫ ∞

0
dλ22(λ22)

n−2

2

∫ 1

−1
d cos θ12(sin θ12)

n−3×

∫ 1

−1

k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
n−i−2(sin θi+12)

n−i−3I2(λmm, {cos θmn, sin θmn}),

(1.9)

where

cos θ12 =
λ12√
λ11λ22

, (1.10)

whereas the relation between the angular variables θi1,2 and the components of λ1 and λ2

which appear in the integrand is given by the sets of transformations















a1 =
√
λ11 cos θ11

· · ·
ak =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

(1.11)

and


























b1 =
√
λ22 (cos θ12 cos θ11 + cos θ22 sin θ11 sin θ12)

· · ·
bi =

√
λ22

[

cos θ12 cos θi1
∏i−1

j=1 sin θj1 + cos θi+12 sin θi1
∏i

j=1 sin θj2

− cos θi1
∑i

k=2 cos θk2 cos θk−1 1
∏k−1

j=1 sin θj2
(

δik + (1− δik)
∏i−k

l=1 sin θk+l−1 1
)]

.

(1.12)

From (1.5) we observe that, whenever the dependence of I1 on the explicit components of the

vectors λ is a polynomial one, after the change of variable the integrand is transformed into

a polynomial in {cos θi, sin θi}, with coefficient depending on λ2, which can be expanded

in terms of Gegenbauer polynomials C(α)
n (cos θi), whose main properties are recalled in

Appendix B.
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where, in the second equality, we have identified additional powers of λ2 in the numerator
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xie
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and split the d-dimensional loop momentum into

qα = qα[2] + λα, q2 = q2[2] + λ2. (2.37)

After parametrizing the integral in these new variables

Id3 [N ] =

∫

d2q[2]
πd/2

∫

dd−2λ
N (q[2],λ

2, x3, x4)

D0D1D2
. (2.38)

the denominators become independent from the transverse directions x3 and x4,

D0 = q2[2] + λ2 −m2
0

D1 = (q2[2] + p1)
2 + λ2 −m2

1,

D2 = (q2[2] + p1 + p2)
2 + λ2 −m2

2, (2.39)

so that, by introducing spherical coordinates for the transverse space

{

x3 = λ cos θ1

x4 = λ sin θ1 cos θ2
(2.40)

The integral can be written takes the same form as (2.19) for k = 2

Id3 [N ] =
1

π2Γ
(

d−4
2

)

∫

d2q[2]

∫ ∞

0
dλ2(λ2)

d−4
2

∫ 1

−1
d cos θ1(sin θ1)

d−5×

∫ 1

−1
d cos θ2(sin θ2)

d−6N (q[2],λ
2, {cos θ1, sin θ1, cos θ2})

D0D1D2
. (2.41)

Hence, the polynomial dependence on angular variables can integrated out by expanding

the numerator in terms of Gegenbauer polynomials. For the scalar case, we find

Id3 [1] =
1

πΓ
(

d−2
2

)

∫

d2q[2]

∫ ∞

0
dλ2(λ2)

d−4
2

1

D0D1D2
, (2.42)

and one can easily verify that odd monomials in any of the transverse variable vanish,

whereas even powers of x3 and x4 produce higher-dimensional integrals, such as

Id3 [x
2
3] = Id3 [x

2
4] =

1

d− 2
Id3 [λ

2] =
1

2
Id+2
3 [1]. (2.43)

2.3 Two-point integrals

As we have already mentioned, for two-point integrals of the type

Id2 [N ] =

∫

ddq

πd/2

N (q)

D0D1
, (2.44)

with

D0 = q2 +m2
0, D1 = (q + p)2 +m2

1, (2.45)
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we should distinguish the case with massless external momentum p2 = 0 from the general

one p2 = 0, since their transverse spaces have different dimensions.

In the off-shell case p2 != 0, we can define three transverse directions, eαi , i = 1, 2, 3,

p · ei = 0 i = 1, 2, 3, (2.46)

and then introduce the vectors

qα[1] =x1e
α
1 , λα =

4
∑

i=2

xie
α
i + µα, (2.47)

in such a way that the d-dimensional loop momentum can be decomposed as

qα = qα[1] + λα, q2 = q2[1] + λ2. (2.48)

Once (2.44) is parametrized in terms of these variables,

Id2 [N ] =

∫

dq[1]
πd/2

∫

dd−1λ
N (q[1],λ

2, x2, x3, x4)

D0D1
, (2.49)

the denominators become independent from the transverse directions,

D0 = q2[1] + λ2 +m2
0, D1 = (q[1] + p)2 + λ2 +m2

1, (2.50)

and we can introduce spherical coordinates for the transverse space,















x2 = λ cos θ1

x3 = λ sin θ1 cos θ2,

x4 = λ sin θ1 sin θ2 cos θ3

(2.51)

and rewrite the integral according to (2.19) for k = 1,

Id2 [N ] =
1

π2Γ
(

d−4
2

)

∫

dq[1]

∫ ∞

0
dλ2(λ2)

d−3
2

∫ 1

−1
d cos θ1(sin θ1)

d−4×
∫ 1

−1
d cos θ2(sin θ2)

d−5
∫ 1

−1
d cos θ3(sin θ3)

d−6×

N (q[1],λ
2, cos θ1, sin θ1, cos θ2, sin θ2, cos θ3)

D0D1
, (2.52)

As usual, all monomials in the transverse variables are now reduced to angular integrals

which can be evaluated using the orthogonality relation (1.13). For the scalar integral, we

find

Id2 =
1

√
πΓ

(

d−1
2

)

∫

dq[1]

∫ ∞

0
dλ2(λ2)

d−3
2

1

D0D1
, (2.53)
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and, analogously to the previous cases, it can be verified that

Id2 [x
2
2 ] = Id2 [x

2
3 ] = Id2 [x

2
4 ] =

1

d− 1
Id2 [λ

2] =
1

2
Id+2
2 [1]. (2.54)

In the special case of a two-point integral with massless external momentum, p2 = 0,

we define only two vectors eα3,4 such that

p · ei = 0 i = 3, 4, (2.55)

Therefore, we introduce a decomposition of the d-dimensional loop momentum analogous

to the one used for the three-point integral, (2.37), and we parametrize (2.44) as

Id2 [N ]
∣

∣

p2=0
=

∫

d2q[2]
πd/2

∫

dd−2λ
N (q[2],λ

2, x3, x4)

D0D1
. (2.56)

In this way, the denominators become

D0 = q2[2] + λ2 +m2
0, D1 = (q[2] + p)2 + λ2 +m2

1, (2.57)

and, introducing spherical coordinates

{

x3 = λ cos θ1

x4 = λ sin θ1 cos θ2
(2.58)

we can specify (2.19) for k = 2 and obtain

Id2 [N ]
∣

∣

p2=0
=

1

π2Γ
(

d−4
2

)

∫

d2q[2]

∫ ∞

0
dλ2(λ2)

d−4
2

∫ 1

−1
d cos θ1(sin θ1)

d−5×

∫ 1

−1
d cos θ2(sin θ2)

d−6N (q[2],λ
2, cos θ1, sin θ1, cos θ2)

D0D1
, (2.59)

For the scalar case, after integration over the angular variables, we get

Id2
∣

∣

p2=0
=

1

πΓ
(

d−2
2

)

∫

d2q[2]

∫ ∞

0
dλ2(λ2)

d−4
2

1

D0D1
, (2.60)

while non-spurious monomials in the transverse direction return higher-dimensional inte-

grals, such as

Id2 [x
2
3 ] = Id2 [x

2
4 ] =

1

d− 2
Id2 [λ

2] =
1

2
Id+2
2 [1]. (2.61)

2.4 One-point integrals

As a limiting case of the parametrization of one-lopo integrals introduced at the beginning

of this Section, we consider the case of one-point integral of the type

Id1 [N ] =

∫

ddq

πd/2

N (q)

D0
, (2.62)
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{

x3 = λ cos θ1

x4 = λ sin θ1 cos θ2
(2.58)

we can specify (2.19) for k = 2 and obtain

Id2 [N ]
∣

∣

p2=0
=

1

π2Γ
(

d−4
2

)

∫

d2q[2]

∫ ∞

0
dλ2(λ2)

d−4
2

∫ 1

−1
d cos θ1(sin θ1)

d−5×

∫ 1

−1
d cos θ2(sin θ2)

d−6N (q[2],λ
2, cos θ1, sin θ1, cos θ2)

D0D1
, (2.59)

For the scalar case, after integration over the angular variables, we get

Id2
∣

∣

p2=0
=

1

πΓ
(

d−2
2

)

∫

d2q[2]

∫ ∞

0
dλ2(λ2)

d−4
2

1

D0D1
, (2.60)

while non-spurious monomials in the transverse direction return higher-dimensional inte-

grals, such as

Id2 [x
2
3 ] = Id2 [x

2
4 ] =

1

d− 2
Id2 [λ

2] =
1

2
Id+2
2 [1]. (2.61)

2.4 One-point integrals

As a limiting case of the parametrization of one-lopo integrals introduced at the beginning

of this Section, we consider the case of one-point integral of the type

Id1 [N ] =

∫

ddq

πd/2

N (q)

D0
, (2.62)
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2 [1]. (2.54)
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with

D0 = q2 +m2
0. (2.63)

In this case, since there is no dependence of the denominators on any external momenta,

we can choose a completely orthornomal basis {eαi } for the four-dimensional physical space,

and identify the vector λα with the full d-dimensional loop momentum,

qα ≡ λα =
4

∑

i=1

xαi e
α
i + µα, λ2 =

4
∑

i=1

x2i + µ2, (2.64)

In this way, if we introduce spherical coordinates,


























x1 = λ cos θ1,

x2 = λ sin θ1 cos θ2,

x3 = λ sin θ1 sin θ2 cos θ3

x4 = λ sin θ1 sin θ2 sin θ3 cos θ4

(2.65)

the integral over full d-dimensional space can be directly read from (2.19) by choosing k = 0,

Id1 [N ] =
1

π2Γ
(

d−4
2

)

∫ ∞

0
dλ2(λ2)

d−2
2

∫ 1

−1
d cos θ1(sin θ1)

d−3
∫ 1

−1
d cos θ1(sin θ1)

d−4×
∫ 1

−1
d cos θ2(sin θ2)

d−5 ×
∫ 1

−1
d cos θ3(sin θ3)

d−6×

N (q[1],λ
2, cos θ1, sin θ1, cos θ2, sin θ2, cos θ3, sin θ3, cos θ4)

D0
, (2.66)

From this expression, we can immediately obtain the scalar integral,

Id1 =
1

Γ
(

d
2

)

∫ ∞

0
dλ2(λ2)

d−2

2
1

D0
, (2.67)

whereas any monomial in transverse components can easily integrated via orthogonality

relation, once it has been expressed in terms of polynomials C(α)
n (cos θi). Again, all mono-

mials containing odd powers of the transverse variables are spurious and the non-vanishing

terms give rise to higher-dimension integrals.

The parametrisation of the integrals in terms of {qα[k],λ
α} and the resulting algebraic in-

tegration of transverse directions in terms of orthogonal polynomials we have presented in

this Section can be, of course, applied to any one-loop Feynman integral. In particular, as

we are about to show, it can be usefully applied to the integrand decomposition of one-

loop amplitudes, where the adaptive ridefinition of the transverse space at each step of the

reduction can lead to a remarkably simplified version of the algorithm.
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3.2 One-loop intengrand decomposition

In order to determine the universal parametrization of the residues for one-loop Feynman

amplitudes, let us consider a general n-point integrand of the form

Ii0···in−1
=

Ni1···in(q)

Di0 · · · Din−1

, (3.9)

In any renormalisable theory, we can admit at most a rank-n numerator i.e., given a decom-

position of the four-dimensional part of the loop momentum in some basis, qα[4] =
∑4

i=1 xie
α
i ,

the most general numerator can be treated as a rank-n polynomial in the variables z =

{x1, x2, x3, x4, µ2},

Ni0···in−1
(z) =

∑

"j∈J(n)

α"jx
j1
1 xj22 xj33 xj44 (µ2)j5 , (3.10)

with J(n) = {"j = (j1, ..., j5)/j1 + j2 + j3 + j4 + 2j5 ≤ n}.
In the following, we we will go step by step through the reduction algorithm outlined in

the previous Section and we will identify the structure of the residues through polynomial

division.

1. n ≥ 5 Proposition 2 guarantees that any integrand with n > 5 external legs is

reducible and, by iteration, it can be written as a linear combination of five-point

integrands. Hence, we can start our analysis from a five-point integrand Ii0···i4.

The numerator Ni0···i4 of a general five-point integrand is a rank-5 polynomial in the

variables z = {x1, x2, x3, x4, µ2}.
A 5-ple cut is a maximum cut, since the cut conditions

Di0(z) = Di1(z) = Di2(z) = Di3(z) = Di4(z) = 0 (3.11)

completely constrain z. In agreement with the Shape Lemma, a Gröebner basis Gi0···i4

of Ji0···i4 is found in the remarkably simple form

gi(z) = κi + zi, i = 1, ... , 5 (3.12)

where κi’s are constants. The linear dependence of gi(z) on zi explicitly shows that

the quintuple cut has a single solution. Therefore, according to the maximum-cut

theorem, the residue must be a constant and, dividing Ni0···i4 modulo Gi0···i4 we con-

sistently find

∆i0···i4 = c0. (3.13)

The Γi0···i4 term obtained from the polynomial division of Ni0···i4 generates the nu-

merators of four-point integrands Ii0···ik1 ik+1···i4 .
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2. n = 4 The numerator of each Ii0···i3 can admit at most four powers loop momentum

that, with a change of basis, can be decomposed, as discussed in Section 2.1 into

qα = qα[3] + λα. (3.14)

Thus, Ni0···i3 can be treated as a rank-4 polynomial in the variables {x1, x2, x3, x4,λ2},

Ni0···i3(x1, x2, x3, x4,λ
2) =

∑

"j∈J(4)

α"jx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.15)

As we have already observed, this parametrization of the loop momentum makes all

denominators independent from its component along the transverse direction x4, so

that the Di’s are functions of the variables z = {x1, x2, x3,λ2} only.

Therefore, the quadruple cut

Di0(z) = Di1(z) = Di2(z) = Di3(z) = 0 (3.16)

can be thought as a “maximum” cut meaning that, although it does not impose

constraints on the transverse component of the loop momentum, it completely fixes

the four variables the denominators depend on.

As a consequence, a Gröebner basis Gi0···i3 = {g1, ..., g4} of the ideal Ji0···i3 is found

in a simplified linear form analogous to the quintuple cut case,

gi(z) = κi + zi, i = 1, ... , 4. (3.17)

Eq.(3.17) makes the uniqueness of the cut-solution in the z variables manifest. As

a consequence, according to maximum-cut theorem, the residue must be a constant

with respect to z. Nevertheless, it can still show a polynomial dependence, up to

rank 4, on the transverse component x4, which is left unconstrained from the cut

conditions.

Accordingly, dividing Ni0···i3 modulo Gi0···i3 we find the remainder

∆i0···i3 = c0 + c1x4 + c2x
2
4 + c3x

3
4 + c4x

4
4, (3.18)

together with the three-point numerators Ii0···ik1 ik+1···i3 contained in Γi0···i3.

The integral of the residue (3.18) is nothing but a particular case of (2.28), so that the

integration over the transverse component of the loop momentum can be performed

using the orthogonality relation of Gegenbauer polynomials.

Therefore, we immediately recognized that odd powers of x4 are spurious whereas

even powers produce higher-dimension integrals. More precisely, recalling (2.32), we

find
∫

ddq

πd/2

∆i0i1i2i3

Di0Di1Di2Di3
= c0I

d
4 [1] +

1

(d− 3)
c2I

d
4 [λ

2] +
3

(d− 3)(d − 1)
c4I

d
4 [λ

4]

= c0I
d
4 [1] +

1

2
c2I

d+2
4 [1] +

3

4
c4I

d+4
4 [1]. (3.19)
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3. n = 3 Once each ot the three-point integrands Ii0···i3 is re-parametrised in terms of

qα = qα[2] + λα, (3.20)

its numerator can be treated as the rank-3 polynomial of the type

Ni0i1i2(x1, x2, x3, x4,λ
2) =

∑

"j∈J(3)

"αjx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.21)

As in the previous case, thanks to the choice of the integration variables, the triple

cut

Di0(z) = Di1(z) = Di2(z) = 0 (3.22)

is a “maximum” cut in the variables z = {x1, x2,λ2} and the Gröebner basis Gi0···i2 =

{g1, g2, g3} assumes the linear form

gi(z) = κi + zi, i = 1, 2, 3. (3.23)

Consistently with the maximum cut theorem, the residue must be a polynomial in

the transverse variable x3 and x4, completely independent from z. The division of

NI0i1i2 modulo Gi0i1i2 returns the remainder

∆i0i1i2 =c0 + c1x3 + c2x4 + c3x
2
3 + c4x3x4

+ c5x
2
4 + c6x

3
3 + c7x

2
3x4 + c8x3x

2
4 + c9x

3
4. (3.24)

together with the numerators of two-point integrands Ni0i1 , Ni0i2 and Ni1i2 . Also in

this case, identifying the residue ∆i0i1i2 as the numerator function appearing in (2.41)

we can integrate out the transverse variables and determine non-spurious contribu-

tions,

Recalling (2.43), we have

∫

ddq

πd/2

∆i0i1i2

Di0Di1Di2
= c0I

d
3 [1] +

1

(d− 3)
(c3 + c5)I

d
3 [λ

2]

= c0I
d
3 [1] +

1

2
(c3 + c5)I

d+2
3 [1]. (3.25)

4. n = 2 If we assume the external momentum to be non-vanishing, p2 "=, we can

express the two-point integrand Ii0i1 in terms of

qα = qα[1] + λα, (3.26)

and obtain a numerator of the form

Ni0i1(x1, x2, x3, x4,λ
2) =

∑

"j∈J(2)

"αjx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.27)
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One-Loop Integrand Decomposition

D0 = q

2 �m

2
0

D1 = (q + p1)
2 �m

2
1

D2 = (q + p1 + p2)
2 �m

2
2

. . . . . .

D

n�2 = (q + p1 + p2 + . . .+ p

n�2)
2 �m

2
n�2

D

n�1 = (q � p

n

)2 �m

2
n�1

4.5 Transverse Space

d = 4� 2✏ (4.25)

d = d

//

+ d? (4.26)
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Adaptive Unitarity

and, introducing spherical coordinates for the (d − 4)-subspace, the loop integral (2.1)

becomes

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

d4q[4]

∫ ∞

0
dµ2(µ2)

d−6
2

N (q[4], µ
2)

∏n−1
i=0 Di

. (2.7)

For practical purposes, it is often convenient to decompose the four-dimensional part of the

loop momentum into a specific basis of vectors {eαi },

qα[4] =
4

∑

i=1

xie
α
i , (2.8)

and rewrite (2.7) as

Idn[N ] =
K

π2Γ
(

d−4
2

)

∫ ∞

−∞

4
∏

i=1

dxi

∫ ∞

0
dµ2(µ2)

d−6
2

N (xi, µ2)
∏n−1

i=0 Di

, (2.9)

where K is the Jacobian factor

K =

√

det

(∂qµ[4]
∂xi

∂q[4]µ
∂xj

)

. (2.10)

The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)
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We observe that, because of (2.14), when the integral (2.1) is written in terms of the

variables {qα[k],λ
α},

Idn[N ] =

∫

dkq[k]
πd/2

∫

dλd−k N (q)
∏n−1

i=0 Di

, (2.15)

all denominators become independent from the transverse components of qα,

Di =
(

q[k] +
i

∑

j=0

pj
)2

+ λ2 +m2
i . (2.16)

As a consequence, the integrand satisfies the requirement (1.3) since, besides being a func-

tion of qα[k], it only depends on λ2 and on a finite subset of components of λα, which

correspond to the transverse directions {xk+1, ..., x4},

N (q) ≡ N (qα[k],λ
2, {xk+1, ..., x4}). (2.17)

Therefore, the integral over the (d− k)-dimensional subspace is exactly of the type (1.1) so

that, if we introduce spherical coordinates


























xk+1 = λ cos θ1

xk+2 = λ sin θ1 cos θ2

· · ·
x4 = λ cos θ4−k

∏3−k
i=1 sin θi,

(2.18)

we can express the one-loop integral, analogously to Eq. (1.4), as

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

dkq[k]

∫ ∞

0
dλ2(λ2)

d−k−2
2

4−k
∏

i=1

∫ 1

−1
d cos θi(sin θi)

d−k−i−2 N (q)
∏n−1

i=0 Di

.

(2.19)

Moreover, since the denominators are completely independent from the transverse variables,

they can only appear polynomially in the numerator. Hence, as we have already observed

in Section 1, any dependence of the integrand on {xk+1, ..., x4} can be immediately inte-

grated by expanding the numerator in terms of Gegenbauer polynomials and by using the

orthogonality relation (1.13). This procedure allows to reduce any tensor Feynman integral

as a linear combination of integrals whose numerators only depends of the components of

the loop momentum lying on the space spanned by the external momenta.

In following, we will specify the parametrization (2.19) for all kinematics configurations

with n ≤ 4 and we will provide some explicit examples of integrals over the transverse

components of the loop momentum.

2.1 Four-point integrals

For a general four-point integral,

Id4 [N ] =

∫

ddq

πd/2

N (q)

D0D1D2D3
, (2.20)
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which is allowed because 1 is proportional to µ2 in the quotient ring P [z]/Ji
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i
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i
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i
4

i
5

. The main

advantage of this choice is that the 5-point residues will vanish after integration. Besides,

with this parametrization, the four-dimensional part of the 4-point residues will coincide

with the one which would be obtained with a purely four-dimensional reduction (i.e. with

q̄ = q, µ2 = 0). With these choices, the most general parametric form of the residues is

[40, 41, 94]
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where we understand that the unknown coe�cients cj depend on the indexes of the residue

(e.g. cj = c
(i

1

···ik)
j ), while the scalar products xi and xi,v depend on both the indexes of the

residue and the loop momentum q. The decomposition in Eq. (3.17) with parametric residues

of Eq. (3.27) is often referred to as the OPP integrand decomposition. It is schematically

depicted in Fig. 3.2.

The parametrization in Eq. (3.27) can easily be extended to e↵ective and non-renormalizable

theories where the rank r of the numerator can be larger than the number n of loop propa-

gators [96]. In the case with r = n+ 1, such parametrization can be generalized by allowing

rmax = k + 1 in Eq. (3.26). The result,
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agrees with the one we first found with a di↵erent (and less general) method in Ref. [96].
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where the numerator function appearing in the r.h.s. is a polynomial in λ2 with coefficients

depending on d,

∆int
i0i1i2i3 = c0 +

c2
d− 3

λ2 +
3

(d− 1)(d− 3)
c4λ

4. (3.41)

the coefficients of the numerator function c̃i can now exhibit and explicit dependence on d,

By dividing ∆int
i0i1i2i3 modulo the Gröebner basis Gi0 ··· i3 defined by (3.17), we find

∆int
i0i1i2i3 =

3
∑

k=0

ak(q[3],λ
2, d)Dik +∆′

i0i1i2i3(d). (3.42)

where ∆′
i0i1i2i3(d) is coefficient only depending on d.

Therefore, this additional polynomial divisions shows that the scalar box in d-dimensions is

the only independent four-point MI to be considered. Similar results, which are summarized

in Table 1, can be found for all lower-point topologies, with the only exception of the p2 = 0

two-point integral, where the two higher-rank integrals involving the component of the loop

momentum along pα, which is not fixed by the cut-conditions, survive the second reduction.

However, These tensor integrals can be further reduced to scalar ones through different

methods, such as IBP identities.

Topology ∆i0 ··· in ∆int
i0 ··· in ∆

′

i0 ··· in

I01234
1 − −
{1} − −

I0123
5 3 1

{1, x4, x24, x34, x44} {1,λ2,λ4} {1}

I012
10 2 1

{1, x3, x4, x23, x3x4, x24, x33, x23x4, x3x24, x34} {1,λ2} {1}

I02
10 2 1

{1, x2, x3, x4, x22, x2x3, x2x4, x23, x3x4, x24} {1,λ2} {1}

I01
10 4 3

{1, x1, x3, x4, x21, x1x3, x1x4, x23, x3x4, x24} {1, x1, x21,λ2} {1, x1, x21}

I0
5 1 −

{1, x1, x2, x3, x4} {1} −

Table 1: Residue parametrization for irreducible one-loop topologies. Here ∆i0 ··· in indicates the

residue obtained after the polynomial division of an arbitrary rank-n numerator, and ∆int
i0 ··· in

the

result of its integral over transverse directions. ∆′

i0 ··· in
corresponds to the minimal residue obtained

from a further division of ∆int
i0 ··· in

. In the figures, wavy lines indicate massive particles, whereas

solid ones stands for arbitrary masses.
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In this way, the two denominators are function of z = {x1,λ2} only, so that the

cut-conditions

Di0(z) = Di1(z) = 0 (3.28)

is, again, maximal. Therefore, Gi0i1 = {g1, g2} is linear,

gi(z) = κi + zi, i = 1, 2 (3.29)

and the residue is a rank-2 polynomial in the transverse variables {x2, x3, x4},

∆i0i1 =c0 + c1x2 + c2x3 + c3x4 + c4x2x3

+ c5x2x4 + c6x3x4 + c7x
2
2 + c8x

2
3 + c9x

2
4. (3.30)

The integration of the residue ∆i0i1 can be treated as a particular case of (2.52) and,

recalling (2.54) we find

∫

ddq

πd/2

∆i0i1

Di0Di1
= c0I

d
2 [1] +

1

(d− 3)
(c7 + c8 + c9)I

d
2 [λ

2]

= c0I
d
2 [1] +

1

2
(c7 + c8 + c9)I

d+2
2 [1]. (3.31)

In case of vanishing external momentum, p2 = 0, we can only define two transverse

directions and the loop momentum is parametrized as

qα = qα[2] + λα. (3.32)

Accordingly, the denominators will depend on the set of variables z = {x1, x2,λ2} and

the double cut (3.28) leaves one of them unconstrained. Nevertheless Gi0i1 = {g1, g2}
is still linear in z,

g1(z) = λ2 + κ1x1 + κ0,

g2(z) = κ2 + x2 (3.33)

and allows to identify a residue with 10 monomials in {x1, x3, x4},

∆i0i1 |p2=0 =c0 + c1x1 + c2x3 + c3x4 + c4x1x3

+ c5x1x4 + c6x3x4 + c7x
2
1 + c8x

2
3 + c9x

2
4. (3.34)

In this case, when after plugging (3.34) into (2.59), we can perform a direct integration

via orthogonal polynomials on x3 and x4 only, whereas numerator depending on the

longitudinal component of the loop momentum remain unreduced,

∫

ddq

πd/2

∆i0i1

Di0Di1

∣

∣

∣

∣

p2=0
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d
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d
2 [x
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d+2
2 [1]. (3.35)

– 18 –

In this way, the two denominators are function of z = {x1,λ2} only, so that the

cut-conditions

Di0(z) = Di1(z) = 0 (3.28)

is, again, maximal. Therefore, Gi0i1 = {g1, g2} is linear,

gi(z) = κi + zi, i = 1, 2 (3.29)

and the residue is a rank-2 polynomial in the transverse variables {x2, x3, x4},

∆i0i1 =c0 + c1x2 + c2x3 + c3x4 + c4x2x3

+ c5x2x4 + c6x3x4 + c7x
2
2 + c8x

2
3 + c9x

2
4. (3.30)

The integration of the residue ∆i0i1 can be treated as a particular case of (2.52) and,

recalling (2.54) we find

∫

ddq

πd/2

∆i0i1

Di0Di1
= c0I

d
2 [1] +

1

(d− 3)
(c7 + c8 + c9)I

d
2 [λ

2]

= c0I
d
2 [1] +

1

2
(c7 + c8 + c9)I

d+2
2 [1]. (3.31)

In case of vanishing external momentum, p2 = 0, we can only define two transverse

directions and the loop momentum is parametrized as

qα = qα[2] + λα. (3.32)

Accordingly, the denominators will depend on the set of variables z = {x1, x2,λ2} and

the double cut (3.28) leaves one of them unconstrained. Nevertheless Gi0i1 = {g1, g2}
is still linear in z,

g1(z) = λ2 + κ1x1 + κ0,

g2(z) = κ2 + x2 (3.33)

and allows to identify a residue with 10 monomials in {x1, x3, x4},

∆i0i1 |p2=0 =c0 + c1x1 + c2x3 + c3x4 + c4x1x3

+ c5x1x4 + c6x3x4 + c7x
2
1 + c8x

2
3 + c9x

2
4. (3.34)

In this case, when after plugging (3.34) into (2.59), we can perform a direct integration

via orthogonal polynomials on x3 and x4 only, whereas numerator depending on the

longitudinal component of the loop momentum remain unreduced,

∫

ddq

πd/2

∆i0i1

Di0Di1

∣

∣

∣

∣

p2=0

= c0I
d
2 [1] + c1I

d
2 [x1] + c7I

d
2 [x

2
1] +

1

(d− 3)
(c8 + c9)I

d
3 [λ

2]

= c0I
d
2 [1] + c1I

d
2 [x1] + c7I

d
2 [x

2
1] +

1

2
(c8 + c9)I

d+2
2 [1]. (3.35)

– 18 –

where the numerator function appearing in the r.h.s. is a polynomial in λ2 with coefficients

depending on d,
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where ∆′
i0i1i2i3(d) is coefficient only depending on d.

Therefore, this additional polynomial divisions shows that the scalar box in d-dimensions is
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= c0I
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1] +

1

(d− 3)
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d
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= c0I
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2 [x1] + c7I
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2 [x
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In this way, the two denominators are function of z = {x1,λ2} only, so that the
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= c0I
d
2 [1] +

1

2
(c7 + c8 + c9)I

d+2
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where the numerator function appearing in the r.h.s. is a polynomial in λ2 with coefficients

depending on d,

∆int
i0i1i2i3 = c0 +

c2
d− 3

λ2 +
3

(d− 1)(d− 3)
c4λ

4. (3.41)

the coefficients of the numerator function c̃i can now exhibit and explicit dependence on d,

By dividing ∆int
i0i1i2i3 modulo the Gröebner basis Gi0 ··· i3 defined by (3.17), we find

∆int
i0i1i2i3 =

3
∑

k=0

ak(q[3],λ
2, d)Dik +∆′

i0i1i2i3(d). (3.42)

where ∆′
i0i1i2i3(d) is coefficient only depending on d.

Therefore, this additional polynomial divisions shows that the scalar box in d-dimensions is

the only independent four-point MI to be considered. Similar results, which are summarized

in Table 1, can be found for all lower-point topologies, with the only exception of the p2 = 0

two-point integral, where the two higher-rank integrals involving the component of the loop

momentum along pα, which is not fixed by the cut-conditions, survive the second reduction.

However, These tensor integrals can be further reduced to scalar ones through different

methods, such as IBP identities.

Topology ∆i0 ··· in ∆int
i0 ··· in ∆

′

i0 ··· in

I01234
1 − −
{1} − −

I0123
5 3 1

{1, x4, x24, x34, x44} {1,λ2,λ4} {1}

I012
10 2 1

{1, x3, x4, x23, x3x4, x24, x33, x23x4, x3x24, x34} {1,λ2} {1}

I02
10 2 1

{1, x2, x3, x4, x22, x2x3, x2x4, x23, x3x4, x24} {1,λ2} {1}

I01
10 4 3

{1, x1, x3, x4, x21, x1x3, x1x4, x23, x3x4, x24} {1, x1, x21,λ2} {1, x1, x21}

I0
5 1 −

{1, x1, x2, x3, x4} {1} −

Table 1: Residue parametrization for irreducible one-loop topologies. Here ∆i0 ··· in indicates the

residue obtained after the polynomial division of an arbitrary rank-n numerator, and ∆int
i0 ··· in

the

result of its integral over transverse directions. ∆′

i0 ··· in
corresponds to the minimal residue obtained

from a further division of ∆int
i0 ··· in

. In the figures, wavy lines indicate massive particles, whereas

solid ones stands for arbitrary masses.
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5. n = 1 The integrand of the most general renormalisable one-point function must be

linear in the component of the four-dimensional part of the loop momentum,

Ni0 = c0 +
4

∑

i=1

cixi. (3.36)

Conversely, Di0 , which is the only element in Gi0 , is quadratic in the loop variable.

Therefore, the quotient of the polynomial division must vanish and we can identify

Ni0 = ∆i0 . (3.37)

In addition, since odd powers of the transverse variables vanish upon integration, the

tadpole contribution is reduced to

∫

ddq

πd/2

∆i0

Di0
= c0I

d
1 [1]. (3.38)

By collecting all the remainders determined at every step of the reduction, we finally reach

the well-known integrand decomposition formula

Ii0···in−1
=

4
∑

k=0





n−1
∑

0=i0<···<ik

∆i0···ik

Di0 · · · Dik



 . (3.39)

3.3 Divide et integra et divide

As we have shown in the previous Section, the polynomial division of the most general

renormalizable numerator returned, for each cut, a residue exclusively depending on the

transverse components of the loop momentum (with the only exception of the p2 = 0 two-

point integral, whose reduced transverse space produces a residue depending on the physical

direction).

The integration technique developed in Section 2, allowed us to remove spurious terms

associated to transverse directions and to end up with a reduced number of monomials

depending on λ2, which have been then identified as higher-dimension scalar integrals.

Nevertheless, the number of independent monomials to be considered for each cut can be

further reduced by observing that, since in the {qα[k],λ
α} parametrization the denominators

depend on a reduced number of variables, monomials in λ2 turn out to be reducible, i.e.

they can be expressed as combination of denominators, with polynomial coefficients, and a

constant remainder.

As an example, let us consider the four-point integral, for which, after integration over

the transverse variables, we have found (see Eq.(3.19)),

∫

ddq

πd/2

∆i0i1i2i3

Di0Di1Di2Di3
=

1

π3/2Γ
(

d−3
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−5
2

∆int
i0i1i2i3

D0D1D2D3
, (3.40)
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New residue parametrization

and, introducing spherical coordinates for the (d − 4)-subspace, the loop integral (2.1)

becomes

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

d4q[4]

∫ ∞

0
dµ2(µ2)

d−6
2

N (q[4], µ
2)

∏n−1
i=0 Di

. (2.7)

For practical purposes, it is often convenient to decompose the four-dimensional part of the

loop momentum into a specific basis of vectors {eαi },

qα[4] =
4

∑

i=1

xie
α
i , (2.8)

and rewrite (2.7) as

Idn[N ] =
K

π2Γ
(

d−4
2

)

∫ ∞

−∞

4
∏

i=1

dxi

∫ ∞

0
dµ2(µ2)

d−6
2

N (xi, µ2)
∏n−1

i=0 Di

, (2.9)

where K is the Jacobian factor

K =

√

det

(∂qµ[4]
∂xi

∂q[4]µ
∂xj

)

. (2.10)

The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)
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Adaptive Unitarity

3.5 The one-loop case: OPP decomposition 39
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Figure 3.2: Schematic illustration of the one-loop OPP decomposition.

which is allowed because 1 is proportional to µ2 in the quotient ring P [z]/Ji
1

i
2

i
3

i
4

i
5

. The main

advantage of this choice is that the 5-point residues will vanish after integration. Besides,

with this parametrization, the four-dimensional part of the 4-point residues will coincide

with the one which would be obtained with a purely four-dimensional reduction (i.e. with

q̄ = q, µ2 = 0). With these choices, the most general parametric form of the residues is

[40, 41, 94]
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where we understand that the unknown coe�cients cj depend on the indexes of the residue

(e.g. cj = c
(i

1

···ik)
j ), while the scalar products xi and xi,v depend on both the indexes of the

residue and the loop momentum q. The decomposition in Eq. (3.17) with parametric residues

of Eq. (3.27) is often referred to as the OPP integrand decomposition. It is schematically

depicted in Fig. 3.2.

The parametrization in Eq. (3.27) can easily be extended to e↵ective and non-renormalizable

theories where the rank r of the numerator can be larger than the number n of loop propa-

gators [96]. In the case with r = n+ 1, such parametrization can be generalized by allowing

rmax = k + 1 in Eq. (3.26). The result,
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agrees with the one we first found with a di↵erent (and less general) method in Ref. [96].

where the numerator function appearing in the r.h.s. is a polynomial in λ2 with coefficients

depending on d,

∆int
i0i1i2i3 = c0 +

c2
d− 3

λ2 +
3

(d− 1)(d− 3)
c4λ

4. (3.41)

the coefficients of the numerator function c̃i can now exhibit and explicit dependence on d,

By dividing ∆int
i0i1i2i3 modulo the Gröebner basis Gi0 ··· i3 defined by (3.17), we find

∆int
i0i1i2i3 =

3
∑

k=0

ak(q[3],λ
2, d)Dik +∆′

i0i1i2i3(d). (3.42)

where ∆′
i0i1i2i3(d) is coefficient only depending on d.

Therefore, this additional polynomial divisions shows that the scalar box in d-dimensions is

the only independent four-point MI to be considered. Similar results, which are summarized

in Table 1, can be found for all lower-point topologies, with the only exception of the p2 = 0

two-point integral, where the two higher-rank integrals involving the component of the loop

momentum along pα, which is not fixed by the cut-conditions, survive the second reduction.

However, These tensor integrals can be further reduced to scalar ones through different

methods, such as IBP identities.

Topology ∆i0 ··· in ∆int
i0 ··· in ∆
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i0 ··· in

I01234
1 − −
{1} − −

I0123
5 3 1

{1, x4, x24, x34, x44} {1,λ2,λ4} {1}
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I0
5 1 −

{1, x1, x2, x3, x4} {1} −

Table 1: Residue parametrization for irreducible one-loop topologies. Here ∆i0 ··· in indicates the

residue obtained after the polynomial division of an arbitrary rank-n numerator, and ∆int
i0 ··· in

the

result of its integral over transverse directions. ∆′

i0 ··· in
corresponds to the minimal residue obtained

from a further division of ∆int
i0 ··· in

. In the figures, wavy lines indicate massive particles, whereas

solid ones stands for arbitrary masses.
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in Table 1, can be found for all lower-point topologies, with the only exception of the p2 = 0

two-point integral, where the two higher-rank integrals involving the component of the loop

momentum along pα, which is not fixed by the cut-conditions, survive the second reduction.

However, These tensor integrals can be further reduced to scalar ones through different
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i0 ··· in

the

result of its integral over transverse directions. ∆′

i0 ··· in
corresponds to the minimal residue obtained

from a further division of ∆int
i0 ··· in

. In the figures, wavy lines indicate massive particles, whereas

solid ones stands for arbitrary masses.
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2. n = 4 The numerator of each Ii0···i3 can admit at most four powers loop momentum

that, with a change of basis, can be decomposed, as discussed in Section 2.1 into

qα = qα[3] + λα. (3.14)

Thus, Ni0···i3 can be treated as a rank-4 polynomial in the variables {x1, x2, x3, x4,λ2},

Ni0···i3(x1, x2, x3, x4,λ
2) =

∑

"j∈J(4)

α"jx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.15)

As we have already observed, this parametrization of the loop momentum makes all

denominators independent from its component along the transverse direction x4, so

that the Di’s are functions of the variables z = {x1, x2, x3,λ2} only.

Therefore, the quadruple cut

Di0(z) = Di1(z) = Di2(z) = Di3(z) = 0 (3.16)

can be thought as a “maximum” cut meaning that, although it does not impose

constraints on the transverse component of the loop momentum, it completely fixes

the four variables the denominators depend on.

As a consequence, a Gröebner basis Gi0···i3 = {g1, ..., g4} of the ideal Ji0···i3 is found

in a simplified linear form analogous to the quintuple cut case,

gi(z) = κi + zi, i = 1, ... , 4. (3.17)

Eq.(3.17) makes the uniqueness of the cut-solution in the z variables manifest. As

a consequence, according to maximum-cut theorem, the residue must be a constant

with respect to z. Nevertheless, it can still show a polynomial dependence, up to

rank 4, on the transverse component x4, which is left unconstrained from the cut

conditions.

Accordingly, dividing Ni0···i3 modulo Gi0···i3 we find the remainder

∆i0···i3 = c0 + c1x4 + c2x
2
4 + c3x

3
4 + c4x

4
4, (3.18)

together with the three-point numerators Ii0···ik1 ik+1···i3 contained in Γi0···i3.

The integral of the residue (3.18) is nothing but a particular case of (2.28), so that the

integration over the transverse component of the loop momentum can be performed

using the orthogonality relation of Gegenbauer polynomials.

Therefore, we immediately recognized that odd powers of x4 are spurious whereas

even powers produce higher-dimension integrals. More precisely, recalling (2.32), we

find
∫

ddq

πd/2

∆i0i1i2i3

Di0Di1Di2Di3
= c0I

d
4 [1] +

1

(d− 3)
c2I

d
4 [λ

2] +
3

(d− 3)(d − 1)
c4I

d
4 [λ

4]

= c0I
d
4 [1] +

1

2
c2I

d+2
4 [1] +

3

4
c4I

d+4
4 [1]. (3.19)
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3. n = 3 Once each ot the three-point integrands Ii0···i3 is re-parametrised in terms of

qα = qα[2] + λα, (3.20)

its numerator can be treated as the rank-3 polynomial of the type

Ni0i1i2(x1, x2, x3, x4,λ
2) =

∑

"j∈J(3)

"αjx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.21)

As in the previous case, thanks to the choice of the integration variables, the triple

cut

Di0(z) = Di1(z) = Di2(z) = 0 (3.22)

is a “maximum” cut in the variables z = {x1, x2,λ2} and the Gröebner basis Gi0···i2 =

{g1, g2, g3} assumes the linear form

gi(z) = κi + zi, i = 1, 2, 3. (3.23)

Consistently with the maximum cut theorem, the residue must be a polynomial in

the transverse variable x3 and x4, completely independent from z. The division of

NI0i1i2 modulo Gi0i1i2 returns the remainder

∆i0i1i2 =c0 + c1x3 + c2x4 + c3x
2
3 + c4x3x4

+ c5x
2
4 + c6x

3
3 + c7x

2
3x4 + c8x3x

2
4 + c9x

3
4. (3.24)

together with the numerators of two-point integrands Ni0i1 , Ni0i2 and Ni1i2 . Also in

this case, identifying the residue ∆i0i1i2 as the numerator function appearing in (2.41)

we can integrate out the transverse variables and determine non-spurious contribu-

tions,

Recalling (2.43), we have

∫

ddq

πd/2

∆i0i1i2

Di0Di1Di2
= c0I

d
3 [1] +

1

(d− 3)
(c3 + c5)I

d
3 [λ

2]

= c0I
d
3 [1] +

1

2
(c3 + c5)I

d+2
3 [1]. (3.25)

4. n = 2 If we assume the external momentum to be non-vanishing, p2 "=, we can

express the two-point integrand Ii0i1 in terms of

qα = qα[1] + λα, (3.26)

and obtain a numerator of the form

Ni0i1(x1, x2, x3, x4,λ
2) =

∑

"j∈J(2)

"αjx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.27)
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In this way, the two denominators are function of z = {x1,λ2} only, so that the

cut-conditions

Di0(z) = Di1(z) = 0 (3.28)

is, again, maximal. Therefore, Gi0i1 = {g1, g2} is linear,

gi(z) = κi + zi, i = 1, 2 (3.29)

and the residue is a rank-2 polynomial in the transverse variables {x2, x3, x4},

∆i0i1 =c0 + c1x2 + c2x3 + c3x4 + c4x2x3

+ c5x2x4 + c6x3x4 + c7x
2
2 + c8x

2
3 + c9x

2
4. (3.30)

The integration of the residue ∆i0i1 can be treated as a particular case of (2.52) and,

recalling (2.54) we find

∫

ddq

πd/2

∆i0i1

Di0Di1
= c0I

d
2 [1] +

1

(d− 3)
(c7 + c8 + c9)I

d
2 [λ

2]

= c0I
d
2 [1] +

1

2
(c7 + c8 + c9)I

d+2
2 [1]. (3.31)

In case of vanishing external momentum, p2 = 0, we can only define two transverse

directions and the loop momentum is parametrized as

qα = qα[2] + λα. (3.32)

Accordingly, the denominators will depend on the set of variables z = {x1, x2,λ2} and

the double cut (3.28) leaves one of them unconstrained. Nevertheless Gi0i1 = {g1, g2}
is still linear in z,

g1(z) = λ2 + κ1x1 + κ0,

g2(z) = κ2 + x2 (3.33)

and allows to identify a residue with 10 monomials in {x1, x3, x4},

∆i0i1 |p2=0 =c0 + c1x1 + c2x3 + c3x4 + c4x1x3

+ c5x1x4 + c6x3x4 + c7x
2
1 + c8x

2
3 + c9x

2
4. (3.34)

In this case, when after plugging (3.34) into (2.59), we can perform a direct integration

via orthogonal polynomials on x3 and x4 only, whereas numerator depending on the

longitudinal component of the loop momentum remain unreduced,

∫

ddq

πd/2

∆i0i1

Di0Di1

∣

∣

∣

∣

p2=0

= c0I
d
2 [1] + c1I

d
2 [x1] + c7I

d
2 [x

2
1] +

1

(d− 3)
(c8 + c9)I

d
3 [λ

2]

= c0I
d
2 [1] + c1I

d
2 [x1] + c7I

d
2 [x

2
1] +

1

2
(c8 + c9)I

d+2
2 [1]. (3.35)
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ddq

πd/2

∆i0i1

Di0Di1

∣

∣

∣

∣

p2=0

= c0I
d
2 [1] + c1I

d
2 [x1] + c7I

d
2 [x

2
1] +

1

(d− 3)
(c8 + c9)I

d
3 [λ

2]

= c0I
d
2 [1] + c1I

d
2 [x1] + c7I

d
2 [x

2
1] +

1

2
(c8 + c9)I

d+2
2 [1]. (3.35)
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In this way, the two denominators are function of z = {x1,λ2} only, so that the

cut-conditions

Di0(z) = Di1(z) = 0 (3.28)
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∆i0i1 =c0 + c1x2 + c2x3 + c3x4 + c4x2x3

+ c5x2x4 + c6x3x4 + c7x
2
2 + c8x

2
3 + c9x

2
4. (3.30)
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∫

ddq

πd/2

∆i0i1

Di0Di1
= c0I

d
2 [1] +

1

(d− 3)
(c7 + c8 + c9)I

d
2 [λ

2]

= c0I
d
2 [1] +

1

2
(c7 + c8 + c9)I

d+2
2 [1]. (3.31)
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5. n = 1 The integrand of the most general renormalisable one-point function must be

linear in the component of the four-dimensional part of the loop momentum,

Ni0 = c0 +
4

∑

i=1

cixi. (3.36)

Conversely, Di0 , which is the only element in Gi0 , is quadratic in the loop variable.

Therefore, the quotient of the polynomial division must vanish and we can identify

Ni0 = ∆i0 . (3.37)

In addition, since odd powers of the transverse variables vanish upon integration, the

tadpole contribution is reduced to

∫

ddq

πd/2

∆i0

Di0
= c0I

d
1 [1]. (3.38)

By collecting all the remainders determined at every step of the reduction, we finally reach

the well-known integrand decomposition formula

Ii0···in−1
=

4
∑

k=0





n−1
∑

0=i0<···<ik

∆i0···ik

Di0 · · · Dik



 . (3.39)

3.3 Divide et integra et divide

As we have shown in the previous Section, the polynomial division of the most general

renormalizable numerator returned, for each cut, a residue exclusively depending on the

transverse components of the loop momentum (with the only exception of the p2 = 0 two-

point integral, whose reduced transverse space produces a residue depending on the physical

direction).

The integration technique developed in Section 2, allowed us to remove spurious terms

associated to transverse directions and to end up with a reduced number of monomials

depending on λ2, which have been then identified as higher-dimension scalar integrals.

Nevertheless, the number of independent monomials to be considered for each cut can be

further reduced by observing that, since in the {qα[k],λ
α} parametrization the denominators

depend on a reduced number of variables, monomials in λ2 turn out to be reducible, i.e.

they can be expressed as combination of denominators, with polynomial coefficients, and a

constant remainder.

As an example, let us consider the four-point integral, for which, after integration over

the transverse variables, we have found (see Eq.(3.19)),

∫

ddq

πd/2

∆i0i1i2i3

Di0Di1Di2Di3
=

1

π3/2Γ
(

d−3
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−5
2

∆int
i0i1i2i3

D0D1D2D3
, (3.40)
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Integration of the Residues over Transverse Angles 

and, introducing spherical coordinates for the (d − 4)-subspace, the loop integral (2.1)

becomes

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

d4q[4]

∫ ∞

0
dµ2(µ2)

d−6
2

N (q[4], µ
2)

∏n−1
i=0 Di

. (2.7)

For practical purposes, it is often convenient to decompose the four-dimensional part of the

loop momentum into a specific basis of vectors {eαi },

qα[4] =
4

∑

i=1

xie
α
i , (2.8)

and rewrite (2.7) as

Idn[N ] =
K

π2Γ
(

d−4
2

)

∫ ∞

−∞

4
∏

i=1

dxi

∫ ∞

0
dµ2(µ2)

d−6
2

N (xi, µ2)
∏n−1

i=0 Di

, (2.9)

where K is the Jacobian factor

K =

√

det

(∂qµ[4]
∂xi

∂q[4]µ
∂xj

)

. (2.10)

The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)
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where the numerator function appearing in the r.h.s. is a polynomial in λ2 with coefficients

depending on d,

∆int
i0i1i2i3 = c0 +

c2
d− 3

λ2 +
3

(d− 1)(d− 3)
c4λ

4. (3.41)

the coefficients of the numerator function c̃i can now exhibit and explicit dependence on d,

By dividing ∆int
i0i1i2i3 modulo the Gröebner basis Gi0 ··· i3 defined by (3.17), we find

∆int
i0i1i2i3 =

3
∑

k=0

ak(q[3],λ
2, d)Dik +∆′

i0i1i2i3(d). (3.42)

where ∆′
i0i1i2i3(d) is coefficient only depending on d.

Therefore, this additional polynomial divisions shows that the scalar box in d-dimensions is

the only independent four-point MI to be considered. Similar results, which are summarized

in Table 1, can be found for all lower-point topologies, with the only exception of the p2 = 0

two-point integral, where the two higher-rank integrals involving the component of the loop

momentum along pα, which is not fixed by the cut-conditions, survive the second reduction.

However, These tensor integrals can be further reduced to scalar ones through different

methods, such as IBP identities.

Topology ∆i0 ··· in ∆int
i0 ··· in ∆

′

i0 ··· in

I01234
1 − −
{1} − −

I0123
5 3 1

{1, x4, x24, x34, x44} {1,λ2,λ4} {1}

I012
10 2 1

{1, x3, x4, x23, x3x4, x24, x33, x23x4, x3x24, x34} {1,λ2} {1}

I02
10 2 1

{1, x2, x3, x4, x22, x2x3, x2x4, x23, x3x4, x24} {1,λ2} {1}

I01
10 4 3

{1, x1, x3, x4, x21, x1x3, x1x4, x23, x3x4, x24} {1, x1, x21,λ2} {1, x1, x21}

I0
5 1 −

{1, x1, x2, x3, x4} {1} −

Table 1: Residue parametrization for irreducible one-loop topologies. Here ∆i0 ··· in indicates the

residue obtained after the polynomial division of an arbitrary rank-n numerator, and ∆int
i0 ··· in

the

result of its integral over transverse directions. ∆′

i0 ··· in
corresponds to the minimal residue obtained

from a further division of ∆int
i0 ··· in

. In the figures, wavy lines indicate massive particles, whereas

solid ones stands for arbitrary masses.
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Two-Loop Integrals

4 Two-loop integrals

In this Section we extended to two-loop integrals the parametrization {qα[k],λ
α} of the loop

momenta introduced in Section 2 and we show that the integration over transverse direc-

tions can be still performed through an expansion of the integrand in terms of Gegenbauer

polynomials.

We consider a general dimensional regulated n-point two-loop integral of the type

Idn[N ] =

∫

ddq1ddq2
πd

N (q1, q2)
∏

i Di
, (4.1)

with arbitrary tensor numerator N (q1, q2) and denominators defined as

Di = l2i +m2
i , with lαi =

∑

j

αijq
α
j +

∑

j

βijp
α
j , (4.2)

where α and β are incidence matrices taking values in {0,±1}. By introducing the parametriza-

tion (2.3) for both loop momenta,

qα1 = qα1[4] + µα
1 , qα2 = qα2[4] + µα

2 , (4.3)

which satisfies the set of relations

µi · µj = µij , qi · qj = qi[4] · qj[4] + µij, (4.4)

the denominators can be rewritten as

Di = l2i[4] +
∑

j,k

αikαik µjk +m2
i , with lαi[4] =

∑

j

αijq
α
i[4] +

∑

j

βijp
α
j . (4.5)

and, moving to spherical coordinates in the (d− 4)-subspaces, the integral (4.1) turns into

Idn[N ] =
2d−6

π5Γ(d− 5)

∫

d4q1,[4]d
4q2,[4]

∫ ∞

0
dµ11

∫ ∞

0
dµ22

∫

√
µ11µ22

−
√
µ11µ22

dµ12(µ11µ22 − µ2
12)

d−7
2 ×

N (qi[4], µij)
∏

i Di
. (4.6)

For practical purposes, the four-dimensional part of the loop momenta can be decomposed

into two generally different basis {eαi } and {fα
i },

qα1[4] =
4

∑

i=1

xie
α
i , qα2[4] =

4
∑

i=1

yif
α
i , (4.7)

so that (4.6) can be parametrised as

Idn[N ] =
2d−6K1K2

π5Γ(d− 5)

∫ 4
∏

i=1

dxidyi

∫ ∞

0
dµ11

∫ ∞

0
dµ22

∫

√
µ11µ22

−
√
µ11µ22

dµ12(µ11µ22 − µ2
12)

d−6
2 ×

N (xj , yi, µij)
∏

iDi
, (4.8)
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We consider a general dimensional regulated n-point two-loop integral of the type

Idn[N ] =

∫

ddq1ddq2
πd

N (q1, q2)
∏

i Di
, (4.1)

with arbitrary tensor numerator N (q1, q2) and denominators defined as

Di = l2i +m2
i , with lαi =

∑

j

αijq
α
j +

∑

j

βijp
α
j , (4.2)

where α and β are incidence matrices taking values in {0,±1}. By introducing the parametriza-

tion (2.3) for both loop momenta,

qα1 = qα1[4] + µα
1 , qα2 = qα2[4] + µα

2 , (4.3)

which satisfies the set of relations

µi · µj = µij , qi · qj = qi[4] · qj[4] + µij, (4.4)

the denominators can be rewritten as

Di = l2i[4] +
∑

j,k

αikαik µjk +m2
i , with lαi[4] =

∑

j

αijq
α
i[4] +

∑

j

βijp
α
j . (4.5)

and, moving to spherical coordinates in the (d− 4)-subspaces, the integral (4.1) turns into

Idn[N ] =
2d−6

π5Γ(d− 5)

∫

d4q1,[4]d
4q2,[4]

∫ ∞

0
dµ11

∫ ∞

0
dµ22

∫

√
µ11µ22

−
√
µ11µ22

dµ12(µ11µ22 − µ2
12)

d−7
2 ×

N (qi[4], µij)
∏

i Di
. (4.6)

For practical purposes, the four-dimensional part of the loop momenta can be decomposed

into two generally different basis {eαi } and {fα
i },

qα1[4] =
4

∑

i=1

xie
α
i , qα2[4] =

4
∑

i=1

yif
α
i , (4.7)

so that (4.6) can be parametrised as
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where Ki correspond to the Jacobian factors

K1 =

√

det

(∂qµ1[4]
∂xi

∂q1[4]µ
∂xj

)

, K2 =

√

det

(∂qµ2[4]
∂yi

∂q2[4]µ
∂yj

)

. (4.9)

Analogously to the one loop case, for a number of external legs n ≤ 4, we can choose to

decompose both qαi[4] into a basis containing 5 − n (4− n for massless two-point integrals)

transverse directions, defined by (2.11)-(2.11b).

In this way, the loop momenta can be rewritten as

qα1 = qα1[k] + λα
1 , qα2 = qα2[k] + λα

2 , k ≤ 3, (4.10)

where

qα1[k] =
k

∑

j=1

xje
α
j , qα2[k] =

k
∑

j=1

yje
α
j , (4.11)

are vectors belonging to k-dimensional space spanned by the external kinematics and

λα
1 =

4
∑

j=k+1

xje
α
j + µα

1 , λα
2 =

4
∑

j=k+1

yje
α
j + µα

2 (4.12)

are vectors of the (d− k)-dimensional orthogonal subspaces, satisfying

λi · λj = λij , λi · pj = 0. (4.13)

Once the integral is expressed in these new variables,

Idn[N ] =

∫

dkq1[k]d
kq2[k]

πd

∫

dd−kλ1d
d−kλ2

N (q1, q2)
∏

iDi
, (4.14)

all denominators become independent from the transverse components of the loop momenta,

Di = l2i[k] +
∑

j,l

αijαil λjl +m2
i , with lαi[k] =

∑

j

αijq
α
i[k] +

∑

j

βijp
α
j , (4.15)

and, since the numerator satisfies the requirements (1.8),

N (q1, q2) ≡ N (q1[k], q2[k],λij , {xk+1, . . . , x4}, {yk+1, . . . , y4}). (4.16)

the integral over the transverse space is exactly of the type (1.6). Hence, after introducing

spherical coordinates,














xk+1 =
√
λ11 cos θ11

· · ·
x4 =

√
λ11 cos θ4−k

∏4−k
i=1 sin θi1

(4.17)
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and


























yk+1 =
√
λ22 (cos θ12 cos θ11 + cos θ22 sin θ11 sin θ12)

· · ·
y4 =

√
λ22

[

cos θ12 cos θ4−k 1
∏4−k−1

j=1 sin θj1 + cos θ5−k 2 sin θ4−k 1
∏4−k

j=1 sin θj2

− cos θ4−k 1
∑4−k

l=2 cos θl 2 cos θl−1 1
∏l−1

j=1 sin θj2
(

δ4−k l + (1− δk−4 l)
∏4−k−l

m=1 sin θl+m−1 1

)]

,

we can express the two-loop integral in analogy to Eq. (1.9)

Idn[N ] =
2d−6

π5Γ (n− k − 1)

∫

dkq1[k]d
kq2[k]

∫ ∞

0
dλ11(λ11)

d−k−2
2

∫ ∞

0
dλ22(λ22)

d−k−2
2 ×

∫ 1

−1
d cos θ12(sin θ12)

d−k−3
∫ 1

−1

4−k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
d−k−i−2(sin θi+12)

d−k−i−3

× N (q1, q2)
∏

iDi
. (4.18)

In addition, since the numerator can only depend polynomially on the transverse direction,

angular integrals can be evaluated, exactly as in the one-loop case, exclusively by means

of the orthogonality relation (1.13) for Gegenbauer polynomials. It should be remarked,

however, that this procedure cannot be applied to the angle θ12 which, being associated to

the direction λ12, will appear in all denominators involving both loop momenta.

In the following we will provide the explicit parametrization of two loop-integral for all kine-

matics configuration, together with some explicit examples of integration over the transverse

space.

4.1 Four-point integrals

In the case of a general four-point integral,

Id4 [N ] =

∫

ddq1ddq2
πd

N (q1, q2)
∏

iDi(q1, q2)
, (4.19)

we decompose the loop momenta as

qα1 = qα1[3] + λα
1 , qα2 = qα2[3] + λα

3 , (4.20)

where

qα1[3] =
3

∑

i=1

xie
α
i , qα2[3] =

3
∑

i=1

yie
α
i

λα
1 = x4e

α
4 + µα

1 , λα
2 = y4e

α
4 + µα

2 . (4.21)

and we parametrise the integral as

Id4 [N ] =

∫

d3q1,[3]d
3q2,[3]

πd

∫

dd−3λ1d
d−3λ2

N (qi[3],λij , x4, y4)
∏

i Di
. (4.22)
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m=1 sin θl+m−1 1
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,

we can express the two-loop integral in analogy to Eq. (1.9)

Idn[N ] =
2d−6

π5Γ (n− k − 1)

∫

dkq1[k]d
kq2[k]

∫ ∞

0
dλ11(λ11)

d−k−2
2

∫ ∞

0
dλ22(λ22)

d−k−2
2 ×

∫ 1

−1
d cos θ12(sin θ12)

d−k−3
∫ 1

−1

4−k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
d−k−i−2(sin θi+12)

d−k−i−3

× N (q1, q2)
∏

iDi
. (4.18)

In addition, since the numerator can only depend polynomially on the transverse direction,

angular integrals can be evaluated, exactly as in the one-loop case, exclusively by means

of the orthogonality relation (1.13) for Gegenbauer polynomials. It should be remarked,

however, that this procedure cannot be applied to the angle θ12 which, being associated to

the direction λ12, will appear in all denominators involving both loop momenta.

In the following we will provide the explicit parametrization of two loop-integral for all kine-

matics configuration, together with some explicit examples of integration over the transverse

space.

4.1 Four-point integrals

In the case of a general four-point integral,

Id4 [N ] =

∫

ddq1ddq2
πd

N (q1, q2)
∏

iDi(q1, q2)
, (4.19)

we decompose the loop momenta as

qα1 = qα1[3] + λα
1 , qα2 = qα2[3] + λα

3 , (4.20)

where

qα1[3] =
3

∑

i=1

xie
α
i , qα2[3] =

3
∑

i=1

yie
α
i

λα
1 = x4e

α
4 + µα

1 , λα
2 = y4e

α
4 + µα

2 . (4.21)

and we parametrise the integral as

Id4 [N ] =

∫

d3q1,[3]d
3q2,[3]

πd

∫

dd−3λ1d
d−3λ2

N (qi[3],λij , x4, y4)
∏

i Di
. (4.22)
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loop momentum 
parametrization

where we assume both vectors λi to be decomposed in terms of an orthonormal basis {vi},

λ1 =
n
∑

i=1

aivi, λ2 =
n
∑

i=1

bivi. (1.7)

For general two-loop applications, we are interested in integrands depending on the scalar

products λij = λi ·λj as well as on subset of k < n− 1 components of both vectors, which

can be freely chosen to be {a1, a2, . . . , ak} and {b1, b2, . . . , bk},

I2(λ1,λ2) = I2(λij , {a1, a2, . . . , ak}, {b1, b2, . . . , bk}). (1.8)

As for the previous case, it is convenient the express the integrals over the n-dimensional

spaces in terms of spherical coordinates,

I2 =
(2π)n−k−1

2Γ (n− k − 1)

∫ ∞

0
dλ11(λ11)

n−2

2

∫ ∞

0
dλ22(λ22)

n−2

2

∫ 1

−1
d cos θ12(sin θ12)

n−3×

∫ 1

−1

k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
n−i−2(sin θi+12)

n−i−3I2(λmm, {cos θmn, sin θmn}),

(1.9)

where

cos θ12 =
λ12√
λ11λ22

, (1.10)

whereas the relation between the angular variables θi1,2 and the components of λ1 and λ2

which appear in the integrand is given by the sets of transformations















a1 =
√
λ11 cos θ11

· · ·
ak =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

(1.11)

and


























b1 =
√
λ22 (cos θ12 cos θ11 + cos θ22 sin θ11 sin θ12)

· · ·
bi =

√
λ22

[

cos θ12 cos θi1
∏i−1

j=1 sin θj1 + cos θi+12 sin θi1
∏i

j=1 sin θj2

− cos θi1
∑i

k=2 cos θk2 cos θk−1 1
∏k−1

j=1 sin θj2
(

δik + (1− δik)
∏i−k

l=1 sin θk+l−1 1
)]

.

(1.12)

From (1.5) we observe that, whenever the dependence of I1 on the explicit components of the

vectors λ is a polynomial one, after the change of variable the integrand is transformed into

a polynomial in {cos θi, sin θi}, with coefficient depending on λ2, which can be expanded

in terms of Gegenbauer polynomials C(α)
n (cos θi), whose main properties are recalled in

Appendix B.
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  Denominators do not depend on “the angular variables” of the Transverse Space
  Numerators depend on “all” loop variables
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  Integration over      : Gegenbauer orthogonality condition
 Spurious integrals vanish automatically @ all-loop! 
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Two-Loop Integrand Decomposition

Topology ∆ ∆int ∆′

I123457
184 105 19 (+6)

{1, x3, y4, y3, y4} {1, x3, y3,λ11,λ22,λ12} {1, x3, y3}

I134567
240 30 4 (+2)

{1, x3, x4, y2, y3, y4} {1, y2,λ11,λ22,λ12} {1, y2}

I234567
245 137 51 (+4)

{1, x3, x4, y2, y3, y4} {1, x3, y2, y3,λ11,λ22,λ12} {1, x3, y2, y3}

Table 3: Non-planar topologies

Topology ∆ ∆int ∆′

I123456
100 4 1

{1, x3, y4, y3, y4} {1,λ11,λ22} {1}

I13456
p2 != 0 100 4 1

{1, x2, x3, x4, y3, y4} {1,λ11,λ22} {1}

I23456
p2 = 0 100 8 3

{1, x1, x3, x4, y3, y4} {1, x1,λ11,λ22} {1, x1}

I1346
100 4 1

{1, x2, x3, x4, y2, y3, y4} {1,λ11,λ22} {1}

I2346
p
2 != 0

100 8 3

{1, x1, x3, x4, y2, y3, y4} {1, x1,λ11,λ22} {1, x1}

I1256
p
2 = 0 q

2 != 0 100 16 9

{1, x1, x3, x4, y1, y3, y4} {1, x1, y1,λ11,λ22} {1, x1, y1}

I1456
p
2 = 0 q

2 = 0 50 2 1

{1, x1, x2, x3, x4, y3, y4} {1,λ22} {1}

I146
p
2 != 0 50 2 1

{1, x1, x2, x3, x4, y2, y3, y4} {1,λ22} {1}

I156
p
2 = 0 50 4 3

{1, x1, x2, x3, x4, y1, y3, y4} {1, y1,λ22} {y1}

I16
25 1 −

{1, x1, x2, x3, x4, y1, y2, y3, y4} {1} −

Table 4: Factorized topologies
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Divide-et-Integra-et-Divide
reducible

where we assume both vectors λi to be decomposed in terms of an orthonormal basis {vi},

λ1 =
n
∑

i=1

aivi, λ2 =
n
∑

i=1

bivi. (1.7)

For general two-loop applications, we are interested in integrands depending on the scalar

products λij = λi ·λj as well as on subset of k < n− 1 components of both vectors, which

can be freely chosen to be {a1, a2, . . . , ak} and {b1, b2, . . . , bk},

I2(λ1,λ2) = I2(λij , {a1, a2, . . . , ak}, {b1, b2, . . . , bk}). (1.8)

As for the previous case, it is convenient the express the integrals over the n-dimensional

spaces in terms of spherical coordinates,
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∏
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(1.9)

where
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whereas the relation between the angular variables θi1,2 and the components of λ1 and λ2

which appear in the integrand is given by the sets of transformations
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From (1.5) we observe that, whenever the dependence of I1 on the explicit components of the

vectors λ is a polynomial one, after the change of variable the integrand is transformed into

a polynomial in {cos θi, sin θi}, with coefficient depending on λ2, which can be expanded

in terms of Gegenbauer polynomials C(α)
n (cos θi), whose main properties are recalled in

Appendix B.
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Topology ∆ ∆int ∆′

I123457
184 105 19 (+6)

{1, x3, y4, y3, y4} {1, x3, y3,λ11,λ22,λ12} {1, x3, y3}

I134567
240 30 4 (+2)

{1, x3, x4, y2, y3, y4} {1, y2,λ11,λ22,λ12} {1, y2}

I234567
245 137 51 (+4)

{1, x3, x4, y2, y3, y4} {1, x3, y2, y3,λ11,λ22,λ12} {1, x3, y2, y3}

Table 3: Non-planar topologies

Topology ∆ ∆int ∆′

I123456
100 4 1

{1, x3, y4, y3, y4} {1,λ11,λ22} {1}

I13456
100 4 1

{1, x2, x3, x4, y3, y4} {1,λ11,λ22} {1}

I23456
100 8 3

{1, x1, x3, x4, y3, y4} {1, x1,λ11,λ22} {1, x1}

I1346
100 4 1

{1, x2, x3, x4, y2, y3, y4} {1,λ11,λ22} {1}

I2346
100 8 3

{1, x1, x3, x4, y2, y3, y4} {1, x1,λ11,λ22} {1, x1}

I1256
100 16 9

{1, x1, x3, x4, y1, y3, y4} {1, x1, y1,λ11,λ22} {1, x1, y1}

I1456
100 2 1

{1, x1, x2, x3, x4, y3, y4} {1,λ22} {1}

I146
50 2 1

{1, x1, x2, x3, x4, y2, y3, y4} {1,λ22} {1}

I156
50 4 3

{1, x1, x2, x3, x4, y1, y3, y4} {1, y1,λ22} {y1}

I16
25 1 −

{1, x1, x2, x3, x4, y1, y2, y3, y4} {1} −

Table 4: Factorized topologies

Topology ∆ ∆int ∆′

I12345678
60 (+16) − −

{1, x3, x4, y4} − −

I1245678
85 (+9) − −

{1, x1, x3, x4, y4} − −

I1235678
145 (+15) − −

{1, x3, x4, y3, y4} − −

I1345679
94 53 7 (+3)

{1, x2, x3, x4, y4} {1, x2, x3,λ11,λ22,λ12} {1, x2, x3}

I345678
66 35 9 (+1)

{1, x1, x2, x3, x4, y4} {1, x1, x2, x3,λ11,λ22,λ12} {1, x1, x2, x3}

Table 5: Planar pentabox topologies
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5 Two-loop Adaptive Integrand Demposition

In the following Tables we give the number of monomials appearing in the residues of all

topologies occurring in the reduction of a general two loop four-point integrand. Divide

et integra et dived as been applied : ∆ indicates the residues obtained after the first

polynomial division, ∆int stands for the residues after integration of transverse directions

and ∆′ labels the residue that survives to the second reduction. The numbers in brackets in

the last column indicate how many monomials of the final residue can be written in terms

of higher-dimensional integrals.

Topology ∆ ∆int ∆′

I1234567
160 93 16 (+6)

{1, x3, y4, y3, y4} {1, x3, y3,λ11,λ22,λ12} {1, x3, y3}

I123467
180 22 2 (+2)

{1, x3, x4, y2, y3, y4} {1, y2,λ11,λ22,λ12} {1, y2}

I123457
180 101 35 (+4)

{1, x3, x4, y2, y3, y4} {1, x3, y2, y3,λ11,λ22,λ12} {1, x3, y2, y3}

I12357
115 66 34 (+1)

{1, x3, x4, y1, y2, y3, y4} {1, x3, y1, y2, y3,λ11,λ22,λ12} {1, x3, y1, y2, y3}

I12457
180 103 59 (+1)

{1, x1, x3, x4, y2, y3, y4} {1, x1, x3, y2, y3,λ11,λ22,λ12} {1, x1, x3, y2, y3}

cutI23457
180 33 12 (+1)

{1, x2, x3, x4, y1, y3, y4} {1, x2, y1,λ11,λ22,λ12} {1, x2, y1}

I12367
115 20 5 (+1)

{1, x3, x4, y1, y2, y3, y4} {1, y1, y2λ11,λ22,λ12} {1, y1, y2}

I13467
180 8 1

{1, x2, x3, x4, y2, y3, y4} {1,λ11,λ22,λ12} {1}

I2467
100 26 16

{1, x1, x2, x3, x4, y2, y3, y4} {1, x1, x2, y2,λ11,λ22,λ12} {x1, x2, y2}

I1567
p2 = 0 100 26 16

{1, x1, x2, x3, x4, y1, y3, y4} {1, x1, x2, y1,λ11,λ22,λ12} {1, x1, x2, y1}

I1467
p2 != 0 100 8 2 (+1)

{1, x1, x2, x3, x4, y2, y3, y4} {1, x1,λ11,λ22,λ12} {1, x1}

I157
p2 = 0 45 18 15

{1, x1, x2, x3, x4, y1, y2, y3, y4} {1, x1, x2, y1, y2,λ11,λ22,λ12} {1, x1, y2, x2, y2}

I147
p2 != 0 45 9 6

{1, x1, x2, x3, x4, y1, y2, y3, y4} {1, x1, y1,λ11,λ22,λ12} {1, x1, y1}

I167
35 4 1

{1, x1, x2, x3, x4, y1, y2, y3, y4} {1,λ11,λ22,λ12} {1}

Table 2: Planar topologies
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Non-Planar

Topology ∆ ∆int ∆′

I12345678
60 (+16) − −

{1, x3, x4, y4} − −

I1245678
85 (+9) − −

{1, x1, x3, x4, y4} − −

I1235678
145 (+15) − −

{1, x3, x4, y3, y4} − −

I1345679
94 53 7 (+3)

{1, x2, x3, x4, y4} {1, x2, x3,λ11,λ22,λ12} {1, x2, x3}

I345678
66 35 9 (+1)

{1, x1, x2, x3, x4, y4} {1, x1, x2, x3,λ11,λ22,λ12} {1, x1, x2, x3}

I123568
? − −
? − −

Table 5: Planar pentabox topologies

Topology ∆

IA
12345678

64 (+16)

{1, x3, x4, y4}

IB
12345678

96 (+20)

{1, x3, y3, y4}

IA
1234578

170 (+15)

{1, x3, x4, y3, y4}

IA
124578

?

?

Table 6: Non-Planar pentabox topologies
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The Geometry of Cut-Residues

l-Loop Recurrence Relation

4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator

i
(/p+m)

p2 �m2 � i0
(4.3)

1

p2 �m2 � i0
! �(p2 �m2) ) (/p+m) !

X

spin�s

us(p) ūs(p) (4.4)

4.3 Phase-space

d4� ⌘ d4`1 d4`2 �(4)
⇣
`1 + `2 � P12

⌘
�(+)

⇣
`21 �m2

1

⌘
�(+)

⇣
`22 �m2

2

⌘
(4.5)

4.4 BCFW

(qi � zi⌘)
2 �m2

i = 0 , zi =
q2i �m2

i

2⌘.qi
, (qi � zj⌘)

2 �m2
i = 2⌘.qi(zi � zj) (4.6)

(�1)
1

q21 �m2
1

1

q22 �m2
2

· · · 1

q2n �m2
n
=

1

q21 �m2
1

1

(q2 � z1⌘)2 �m2
2

· · · 1

(qn � z1⌘)2 �m2
n

+
1

(q1 � z2⌘)2 �m2
1

1

q22 �m2
2

· · · 1

(qn � z2⌘)2 �m2
n

+ . . . . . .

+
1

(q1 � zn⌘)2 �m2
1

1

(q2 � zn⌘)2 �m2
2

· · · 1

q2n �m2
n

(4.7)

I
dz

z(z � z1)(z � z2) · · · (z � zn)
= 0 (4.8)

(�1)

z1z2 · · · zn
=

1

z1(z1 � z2) · · · (z1 � zn)

+
1

(z2 � z1)z2 · · · (z2 � zn)
+ . . . . . .

+
1

(zn � z1)(zn � z2) · · · (zn � zn�1)zn
(4.9)
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Master functions

(polar coordinates)
Harmonic expansion of the residue:

Rotation Invariance manifest

Peraro Primo & P.M.   



Towards 2-loop Automation

Application of the Integration over Transverse Angles

  Simplifying the integrands to be reduced
 Removing the transverse direction ==> less coefficients to be determined

  Generalising and extending to all-loop the R2-integration 
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Basis :: Master Functions

Tree level

One Loop

Higher Loops

Known!

Known!

?Unknown?



�NLO =

Z

n

✓
d�Born + d�Virtual

◆
+

Z

n+1
d�Real

�NLO =

Z

n

✓
d�Born + d�Virtual +

Z

1
d�Subtractions

◆
+

Z

n+1

✓
d�Real � d�Subtractions

◆

(p2 �m

2) = (/p�m)(/p+m) (4.10)

�g

µ⌫ =
X

polarization��

✏

µ

�

(k)
⇣
✏

⌫

�

(k)
⌘⇤

(4.11)

(/p+m) =
X

spin�s

u

s

(p) ū
s

(p) (4.12)

D = 4� 2✏

Z
d

4�2✏
K ⌘

Z
d

4
k

Z
d

�2✏
µ ⌘

Z
d

4
k

Z
d⌦(✏)

Z 1

0
dµ

2 (µ2)�1�✏ (4.13)

K

↵

= k

↵

+ µ

↵

, /K = /k + /µ , K

2 = k

2 � µ

2
,

�
/k, /µ

 
= 0 =

⇥
�5, /µ

⇤
, /µ = iµ�5

X

s=±
u

s

(k) ū
s

(k) = (/k +m� iµ�5) (4.14)

X

�=±,0

✏

↵

�

(k)
⇣
✏

�

�

(k)
⌘⇤

= �g

↵� +
k

↵

k

�

µ

2
(4.15)

@

x

= A(d, x) (4.16)
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Let us assume that H can be split in two terms as

H(t) = H0(t) + εH1(t) , (2.2)

where H0 is a solvable Hamiltonian and ε ! 1 is a small perturbation parameter. We may

move to the interaction picture by performing a transformation via a unitary operator B.

In this representation any operator A transforms according to

A(t) = B(t)AI(t)B
†(t) . (2.3)

In the interaction picture one imposes that only H1 (H0) enters the time evolution of the

states (of the operators), thus B is obtained by imposing

i! ∂tUI(t) = εH1,I(t)UI(t) +
(

H0,I(t)− i!B†(t) ∂tB(t)
)

UI(t)
!
= εH1,I(t)UI(t), (2.4)

so that B fulfills

i! ∂tB(t) = H0(t)B(t) . (2.5)

In the interaction picture the Schrödinger equation can be cast in a canonical form,

i! ∂t|ΨI(t)〉 = εH1,I(t)|ΨI(t)〉 , (2.6)

where the ε-dependence is factorized. If the Hamiltonian H0 at different times commute,

the solution of Eq. (2.5) is

B(t) = e
− i

!

∫ t
t0

dτH0(τ) . (2.7)

The important remark in this derivation is that, as a consequence of the linear ε-

dependence of the original Hamiltonian Eq. (2.2), the states fulfill an equation in a canonical

form by means of a transformation matrix B that obeys the differential equation (2.5). This

simple quantum mechanical example contains the two main guiding principles for building

canonical systems of differential equations for Feynman integrals:

• choose a set of Master Integrals obeying a system of differential equations linear in ε;

• find the transformation matrix by solving a differential equation governed by the

constant term.

In this example H0(t) and B(t) commute. In the case of Feynman integrals, no assumption

can be made on the properties of the matrix associated to the systems of DE’s built out

of IBP-id’s. Therefore, in the following, we need to consider the generic case of non-

commutative operators.

– 4 –

Let us assume that H can be split in two terms as

H(t) = H0(t) + εH1(t) , (2.2)

where H0 is a solvable Hamiltonian and ε ! 1 is a small perturbation parameter. We may

move to the interaction picture by performing a transformation via a unitary operator B.

In this representation any operator A transforms according to

A(t) = B(t)AI(t)B
†(t) . (2.3)

In the interaction picture one imposes that only H1 (H0) enters the time evolution of the

states (of the operators), thus B is obtained by imposing

i! ∂tUI(t) = εH1,I(t)UI(t) +
(

H0,I(t)− i!B†(t) ∂tB(t)
)

UI(t)
!
= εH1,I(t)UI(t), (2.4)

so that B fulfills

i! ∂tB(t) = H0(t)B(t) . (2.5)

In the interaction picture the Schrödinger equation can be cast in a canonical form,

i! ∂t|ΨI(t)〉 = εH1,I(t)|ΨI(t)〉 , (2.6)

where the ε-dependence is factorized. If the Hamiltonian H0 at different times commute,

the solution of Eq. (2.5) is

B(t) = e
− i

!

∫ t
t0

dτH0(τ) . (2.7)

The important remark in this derivation is that, as a consequence of the linear ε-

dependence of the original Hamiltonian Eq. (2.2), the states fulfill an equation in a canonical

form by means of a transformation matrix B that obeys the differential equation (2.5). This

simple quantum mechanical example contains the two main guiding principles for building

canonical systems of differential equations for Feynman integrals:

• choose a set of Master Integrals obeying a system of differential equations linear in ε;

• find the transformation matrix by solving a differential equation governed by the

constant term.

In this example H0(t) and B(t) commute. In the case of Feynman integrals, no assumption

can be made on the properties of the matrix associated to the systems of DE’s built out

of IBP-id’s. Therefore, in the following, we need to consider the generic case of non-

commutative operators.

– 4 –

Let us assume that H can be split in two terms as

H(t) = H0(t) + εH1(t) , (2.2)

where H0 is a solvable Hamiltonian and ε ! 1 is a small perturbation parameter. We may

move to the interaction picture by performing a transformation via a unitary operator B.

In this representation any operator A transforms according to

A(t) = B(t)AI(t)B
†(t) . (2.3)

In the interaction picture one imposes that only H1 (H0) enters the time evolution of the

states (of the operators), thus B is obtained by imposing

i! ∂tUI(t) = εH1,I(t)UI(t) +
(

H0,I(t)− i!B†(t) ∂tB(t)
)

UI(t)
!
= εH1,I(t)UI(t), (2.4)

so that B fulfills

i! ∂tB(t) = H0(t)B(t) . (2.5)

In the interaction picture the Schrödinger equation can be cast in a canonical form,

i! ∂t|ΨI(t)〉 = εH1,I(t)|ΨI(t)〉 , (2.6)

where the ε-dependence is factorized. If the Hamiltonian H0 at different times commute,

the solution of Eq. (2.5) is

B(t) = e
− i

!

∫ t
t0

dτH0(τ) . (2.7)

The important remark in this derivation is that, as a consequence of the linear ε-

dependence of the original Hamiltonian Eq. (2.2), the states fulfill an equation in a canonical

form by means of a transformation matrix B that obeys the differential equation (2.5). This

simple quantum mechanical example contains the two main guiding principles for building

canonical systems of differential equations for Feynman integrals:

• choose a set of Master Integrals obeying a system of differential equations linear in ε;

• find the transformation matrix by solving a differential equation governed by the

constant term.

In this example H0(t) and B(t) commute. In the case of Feynman integrals, no assumption

can be made on the properties of the matrix associated to the systems of DE’s built out

of IBP-id’s. Therefore, in the following, we need to consider the generic case of non-

commutative operators.

– 4 –

Quantum Mechanics
Schroedinger Eq’n (ɛ-linear Hamiltonian)

Interaction Picture

Matrix Transform

Schroedinger Eq’n (canonical form)

10. Remainder Theorem

f(x)

g(x)
= q(x) +

r(x)

g(x)
, deg(r) < deg(g) (10.1)

g(x) = (x� x0) : ) f(x)

(x� x0)
= q(x) +

r0
(x� x0)

, r0 = f(x0) (10.2)

11. Quantum Mechanics

i~ @t| (t)i = H(✏, t)| (t)i , H(✏, t) = H0(t) + ✏H1(t) (11.1)
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8. Di↵. Eqs.

H
i,I

(t) = B†(t) H
i

(t) B(t) (8.1)

@
x

f(x, y, ✏) =
⇣
A

10

(x, y) + ✏A
11

(x, y)
⌘
f(x, y, ✏) (8.2)

@
y

f(x, y, ✏) =
⇣
A

20

(x, y) + ✏A
21

(x, y)
⌘
f(x, y, ✏) (8.3)

@
x

g(x, y, ✏) = ✏Â
1

(x, y) g(x, y, ✏) (8.4)

@
y

g(x, y, ✏) = ✏Â
2

(x, y) g(x, y, ✏) (8.5)

dg(x, y, ✏) = ✏ dÂ(x, y) g(x, y, ✏) , dÂ ⌘ Â
1

dx+ Â
2

dy (8.6)

{x, 1� x, y, 1� y, 1� x� y, x+ y} (8.7)
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Magnus Expansion

BCH-formula

Iterated Integrals

solution: Matrix Exponential 

System of 1st ODE

............

where H0 is a solvable Hamiltonian and ε ! 1 is a small perturbation parameter. We may
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the solution of Eq. (2.5) is

B(t) = e
− i

!

∫ t
t0

dτH0(τ) . (2.7)

The important remark in this derivation is that, as a consequence of the linear ε-

dependence of the original Hamiltonian Eq. (2.2), the states fulfill an equation in a canonical

form by means of a transformation matrix B that obeys the differential equation (2.5). This

simple quantum mechanical example contains the two main guiding principles for building
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constant term.

In this example H0(t) and B(t) commute. In the case of Feynman integrals, no assumption

can be made on the properties of the matrix associated to the systems of DE’s built out

of IBP-id’s. Therefore, in the following, we need to consider the generic case of non-
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3. Magnus series expansion

Consider a generic linear matrix differential equation [17]

∂xY (x) = A(x)Y (x) , Y (x0) = Y0 . (3.1)

If A(x) commutes with its integral
∫ x
x0

dτA(τ), e.g. in the scalar case, the solution can be

written as

Y (x) = e
∫ x
x0

dτA(τ)
Y0 . (3.2)
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A(x) non-commutative
In the general non-commutative case, one can use the Magnus theorem [15] to write the

solution as,

Y (x) = eΩ(x,x0) Y (x0) ≡ eΩ(x) Y0 , (3.3)

where Ω(x) is written as a series expansion, called Magnus expansion,

Ω(x) =
∞
∑

n=1

Ωn(x) . (3.4)

The proof of the Magnus theorem is presented in the Appendix A, together with the actual

expression of the terms Ωn. The first three terms of the expansion (3.4) read as follows:

Ω1(x) =

∫ x

x0

dτ1A(τ1) ,

Ω2(x) =
1

2

∫ x

x0

dτ1

∫ τ1

x0

dτ2 [A(τ1), A(τ2)] ,

Ω3(x) =
1

6

∫ t

x0

dτ1

∫ τ1

x0

dτ2

∫ τ2

x0

dτ3 [A(τ1), [A(τ2), A(τ3)]] + [A(τ3), [A(τ2), A(τ1)]] . (3.5)

We remark that if A and its integral commute, the series (3.4) is truncated at the first

order, Ω = Ω1, and we recover the solution (3.2). As a notational aside, in the following we

will use the symbol Ω[A](x) to denote the Magnus expansion obtained using A as kernel.

3.1 Magnus and Dyson series expansion

Magnus series is related to the Dyson series [17], and their connection can be obtained

starting from the Dyson expansion of the solution of the system (3.1),

Y (x) = Y0 +
∞
∑

n=1

Yn(x) , Yn(x) ≡
∫ x

x0

dτ1 . . .

∫ τn−1

x0

dτn A(τ1)A(τ2) · · ·A(τn) , (3.6)

in terms of the time-ordered integrals Yn. Comparing Eq. (3.3) and (3.6) we have

∞
∑

j=1

Ωj(x) = log

(

Y0 +
∞
∑

n=1

Yn(x)

)

, (3.7)

and the following relations

Y1 = Ω1 ,

Y2 = Ω2 +
1

2!
Ω2
1 ,

Y3 = Ω3 +
1

2!
(Ω1Ω2 + Ω2Ω1) +

1

3!
Ω3
1 ,

...
...

Yn = Ωn +
n
∑

j=2

1

j
Q(j)

n . (3.8)
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3.1 Magnus and Dyson series expansion

Magnus series is related to the Dyson series [17], and their connection can be obtained

starting from the Dyson expansion of the solution of the system (3.1),

Y (x) = Y0 +
∞
∑

n=1

Yn(x) , Yn(x) ≡
∫ x

x0

dτ1 . . .

∫ τn−1

x0

dτn A(τ1)A(τ2) · · ·A(τn) , (3.6)

in terms of the time-ordered integrals Yn. Comparing Eq. (3.3) and (3.6) we have

∞
∑

j=1

Ωj(x) = log

(

Y0 +
∞
∑

n=1

Yn(x)

)

, (3.7)

and the following relations

Y1 = Ω1 ,

Y2 = Ω2 +
1

2!
Ω2
1 ,

Y3 = Ω3 +
1

2!
(Ω1Ω2 + Ω2Ω1) +

1

3!
Ω3
1 ,

...
...

Yn = Ωn +
n
∑

j=2

1

j
Q(j)

n . (3.8)
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In the above expression, the path-ordered exponential is a compact notation for the series

P exp

⇢
✏

Z

�

dA
�

= + ✏

Z

�

dA+ ✏

2
Z

�

dA dA+ ✏

3
Z

�

dA dA dA . . . , (2.29)

in which the line integral of the product of k matrix-valued 1-forms dA is understood in

the sense of Chen’s iterated integrals (see [? ]) and � is a piecewise-smooth path

� : [0, 1] 3 t 7! �(t) = (�1(t), �2(t)) , (2.30)

such that �(0) = ~x0 and �(1) = ~x. The iterated integrals in eq. (2.29) do not depend on

the actual choice of the path, provided the curve does not contain any singularity of dA
and it does not cross any of its branch cuts, but only on the endpoints. In this sense, if one

fixes ~x0 and lets ~x vary, eq. (2.28) can be thought of as a function of ~x. We assume that

the vector of MIs at any point I(~x) is normalized in such a way that it admits a Taylor

series in ✏:

I(~x) = I(0)(~x) + ✏ I(1)(~x) + ✏

2I(2)(~x) + . . . . (2.31)

The solution I(~x) is then in principle determined through (2.28) at any order of the ✏-

expansion, and reads (up to the coe�cient of ✏4)

I(0)(~x) = I(0)(~x0) (2.32)

I(1)(~x) = I(1)(~x0) +

Z

�

dA I(0)(~x0) (2.33)

I(2)(~x) = I(2)(~x0) +

Z

�

dA I(1)(~x0) +

Z

�

dA dA I(0)(~x0) (2.34)

I(3)(~x) = I(3)(~x0) +

Z

�

dA I(2)(~x0) +

Z

�

dA dA I(1)(~x0)

+

Z

�

dA dA dA I(0)(~x0) (2.35)

I(4)(~x) = I(4)(~x0) +

Z

�

dA I(3)(~x0) +

Z

�

dA dA I(2)(~x0)

+

Z

�

dA dA dA I(1)(~x0) +

Z

�

dA dA dA dA I(0)(~x0) . (2.36)

The problem of solving (2.26), given a set of initial conditions, reduces therefore to the

evaluation of matrices of the type
Z

�

dA . . . dA| {z }
k times

, (2.37)

whose entries, due to (2.27), are linear combinations of Chen’s iterated integrals of the

form
Z

�

d log ⌘
i1 . . . d log ⌘i

k

⌘
Z

0t1...t

k

1
g

�

i

k

(t
k

) . . . g�
i1
(t1) dt1 . . . dt

k

, (2.38)
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with

g

�

i

(t) =
d

dt

log ⌘
i

(�(t)) . (2.39)

The empty integral (eq. (2.38) for k = 0) is defined to be equal to 1. We stress that only

the matrices (2.37) do not depend on the explicit choice of the path [Ste: conditions for

path-independence?], while the individual summands (contributing to their entries) do.

2.3.2 Chen’s iterated integrals

For compactness of notation, we introduce the equivalent symbols

C [�]
i

k

,...,i1
⌘ C

k,...,1[�] ⌘
Z

�

d log ⌘
i1 . . . d log ⌘i

k

, (2.40)

which also emphasize that the iterated integral in (2.38) is in general a functional of the

path �. It easy to prove, anyway, that C [�]
i

k

,...,i1
is invariant under reparametrization of the

path. [Ste: 1. reparametrization invariance] Likewise, one can show that if the path

�

�1 is the path � is traversed in reverse order, then [Ste: 2. reverse path]

C [��1]
i

k

,...,i1
= (�1)kC [�]

i

k

,...,i1
. (2.41)

From (2.38) and (2.39) it follows that the line integral of one d log is defined as usual
Z

�

d log ⌘ ⌘
Z

0t1

d log ⌘(�(t))

dt

dt , (2.42)

and only depends on the endpoints ~x0, ~x
Z

�

d log ⌘ = log ⌘(~x)� log ⌘(~x0) . (2.43)

It is convenient to introduce the path integral “up to some point along �”: given a path �

and a parameter s 2 [0, 1], one can define the 1-parameter family of paths

�

s

: [0, 1] 3 t 7! ~x = (�1(s t), �2(s t)) . (2.44)

If s = 1, then trivially �

s

= �. If s = 0 the image of the interval [0, 1] is just {~x0}. If

s 2 (0, 1), then the curve �

s

([0, 1]) starts at �(0) = ~x0 and overlaps with the curve �([0, 1])

up to the point �(s), where it ends. It is then easy to see that the path integral along �

s

can be written as

C [�
s

]
i

k

,...,i1
=

Z

0t1...t

k

s

g

�

i

k

(t
k

) . . . g�
i1
(t1) dt1 . . . dt

k

, (2.45)

which di↵ers from eq. (2.38) by the fact that the outer integration (i.e. the one in dt

k

)

is performed over [0, s] instead of [0, 1]. Having introduced �

s

, we can rewrite (2.38) in a

recursive manner:

C [�]
i

k

,...,i1
=

Z 1

0
g

�

i

k

(s) C [�
s

]
i

k�1,...,i1
ds . (2.46)
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s
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s

g

�

i

k

(t
k
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(t1) dt1 . . . dt
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which di↵ers from eq. (2.38) by the fact that the outer integration (i.e. the one in dt

k

)

is performed over [0, s] instead of [0, 1]. Having introduced �

s

, we can rewrite (2.38) in a

recursive manner:

C [�]
i

k

,...,i1
=

Z 1

0
g

�

i

k

(s) C [�
s

]
i

k�1,...,i1
ds . (2.46)
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From eq. (2.45) we can also immediately derive the following identity:

d

ds

C [�
s

]
i

k

,...,i1
= g

�

i

k

(s) C [�
s

]
i

k�1,...,i1
. (2.47)

Chen’s iterated integrals can be shown to fulfill shu✏e algebra relations: if ~m =

m

M

, . . . ,m1 and ~n = n

N

, . . . , n1 (with M and N natural numbers)

C [�]
~m

C [�]
~n

= C [�]
~m

tt C [�]
~n

=
X

~p=~mtt~n

C [�]
~p

, (2.48)

where shu✏e product ~mtt~n denotes all possible merges of ~m and ~n preserving their

respective orderings. [Ste: 3. shu✏e]

If ↵,� : [0, 1] ! M are such that ↵(0) = ~x0, ↵(1) = �(0), and �(1) = ~x, then the

composed path � ⌘ ↵� is obtained by first traversing ↵ and then �. One can prove that

the integral over such a composed path satisfies [Ste: 4. composed path]

C [↵�]
i

k

,...,i1
=

kX

p=0

C [↵]
i

k

,...,i

p+1
C [�]
i

p

,...,i1
. (2.49)

In order to compute the path ordered integral of k d log forms using the definition,

eq. (2.38) (or, equivalently, eq. (2.46)), in principle one would have to perform k nested

integrations. While in particular cases this can be done analytically, in general this will be

accomplished by means of numerical methods. The innermost integration can always be

performed analytically using (2.43), so that only k � 1 integrations are left. For instance,

in the case k = 2,

C [�]
b,a

=

Z 1

0
g

b

(t) C [�
t

]
a

dt

=

Z 1

0
g

b

(t)(log ⌘
a

(~x(t))� log ⌘
a

(~x0)) dt . (2.50)

For k � 3, one can proceed recursively using eq. (2.46), assuming that the numerical

evaluation up to the first k � 1 iterations is a solved problem. Using integration by parts,

one can show that the numerical integration over the outermost weight g
k

can actually be

avoided, leaving only k � 2 integrations to be performed

C [�]
i

k

,...,i1
= log ⌘

i

k

(~x) C [�]
i

k�1,...,i1
�
Z 1

0
log ⌘

i

k

(~x(t)) g
i

k�1(t) C
[�

t

]
i

k�2,...,i1
dt . (2.51)

2.3.3 Goncharov

[Ste: shouldn’t we just say that they arise as particular cases and refer to the

3loop paper for the notation, and to Henn and Caron-Huot App.C for the

correspondence Chen-GPLs, without writing anything?]

Goncharov polylogarithms (see [14–17]) arise as particular cases of Chen’s iterated

integrals. If the alphabet (i.e. all the ⌘

i

) is linear in x and y, the iterated integral can be
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Quantum Mechanics Feynman Integrals

Feynman integrals can be determined from differential equations that looks like 
gauge transformations

�NLO =

Z

n

✓
d�Born + d�Virtual

◆
+

Z

n+1
d�Real

�NLO =

Z

n

✓
d�Born + d�Virtual +

Z

1
d�Subtractions

◆
+

Z

n+1

✓
d�Real � d�Subtractions

◆

(p2 �m

2) = (/p�m)(/p+m) (4.10)

�g

µ⌫ =
X

polarization��

✏

µ

�

(k)
⇣
✏

⌫

�

(k)
⌘⇤

(4.11)

(/p+m) =
X

spin�s

u

s

(p) ū
s

(p) (4.12)

D = 4� 2✏

Z
d

4�2✏
K ⌘

Z
d

4
k

Z
d

�2✏
µ ⌘

Z
d

4
k

Z
d⌦(✏)

Z 1

0
dµ

2 (µ2)�1�✏ (4.13)

K

↵

= k

↵

+ µ

↵

, /K = /k + /µ , K

2 = k

2 � µ

2
,

�
/k, /µ

 
= 0 =

⇥
�5, /µ

⇤
, /µ = iµ�5

X

s=±
u

s

(k) ū
s

(k) = (/k +m� iµ�5) (4.14)

X

�=±,0

✏

↵

�

(k)
⇣
✏

�

�

(k)
⌘⇤

= �g

↵� +
k

↵

k

�

µ

2
(4.15)

@

x

= A(d, x) (4.16)

= e⌦(d,x) (4.17)

= e
R
dx A(d,x) (4.18)
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‘-linear basis
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Ulrich Schubert New Developments for Scattering Amplitudes 51 / 57
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no-mass
Figure 1: One-loop topologies. Thin plain lines represent mass-less esternal particles and

propagators, while bold lines represent massive propagators.

Figure 2: Two-loop topologies. Thin plain lines represent mass-less esternal particles

and propagators, while bold lines represent massive propagators.

At the one-loop level, the topologies involved in the QCD and EW corrections are

shown in Fig. 1 a), mass-less case, b), one massive exchange, and c), two-massive exchange.

In the next section our routing will be specified and the calculation of the Masters will be
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1 Notations and Conventions

In this paper we study the two-loop corrections to the following partonic scattering pro-

cesses:

q(p1) + q̄(p2) ! l

�(p3) + l

+(p4) , (1.1)

q(p1) + q̄

0(p2) ! l

�(p3) + ⌫(p4) . (1.2)

The external particles are considered mass-less and they are on their mass-shell, p21 = p

2
2 =

p

2
3 = p

2
4 = 0. The scattering can be described in terms of the Mandelstam variables2

s = �(p1 + p2)
2
, t = �(p1 � p3)

2
, u = �(p1 � p4)

2
, (1.3)

in such a way that, for momentun conservation, we have s+ t+ u = 0.

The quantum corrections to the processes 1.2 can be expanded in power series of the

coupling constants. At one loop, the QCD corrections consist on the exchange of a virtual

gluon between the initial-state quarks. The final state is not a↵ected, and at most mass-less

three-point functions have to be evaluated. The EW corrections, instead, consist on the

exchange of photons, Z and W bosons. Moreover, these quanta can be exchanged between

the quarks in the initial state as well as the leptons in the final state, but they can also be

exchanged between a quark in the initial state and a lepton in the final state. Consequently,

in the calculation of the one-loop corrections one has to evaluate massive box and vertex

diagrams. In the process of qq̄ ! l⌫ one has to evaluate diagrams in which a Z and a W

bosons are exchanged simultaneously. In order to reduce the number of scales present in

the calculation, we expand the Z propagators around m

W

:

1

p

2 +m

2
Z

=
1

p

2 +m

2
W

+�m

2
⇡ 1

p

2 +m

2
W

+
�m

2

(p2 +m

2
W

)2
+ ... (1.4)

where �m

2 = m

2
Z

�m

2
W

and the e↵ective parameter of the expansion is ⇠ = �m

2
/m

2
W

⇠
1/4. Expanding in ⇠ the Feynman diagrams results in calculating diagrams with degenerate

masses (then, three scales have to be considered, s, t and the mass m), but with increased

powers in the expanded denominator. However, this does not cause any problem in the

calculation, since diagrams with higher powers of the propagators are in any case reduced to

the same set of Master Integrals. For phenomenological purposes the first order in ⇠ might

be su�cient, but in principle any order in ⇠ can be calculated without e↵ort, just relying

on the reduction procedure. We apply same approximation to the two-loop diagrams as

well.

We calculate the quantum corrections to the processes 1.2 using a Feynman diagrams

approach. After the interference with the leading order and summation over the spins

and colors, we express the modulus squared of the amplitude in terms of dimensionally

regularized scalar integrals. These integrals are reduced to a set of Master Integrals by

means of integration-by-parts identities [] and Lorentz-invariance identities [], implemented

in the computer program3 REDUZE 2 [].
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Drell-Yan @ 2loop EW-QCD

1-mass 2-mass

known new new

System of 1st ODE

5. The matrix A

[3]
y,0 has no diagonal term as well,

A

[3]
y,0 = N

[3]
y,0 , (2.21)

so we can define the last basis change

A

[3]
�

! A

[4]
�

, B

[4] ⌘ e

⌦[N [3]
y,0]

. (2.22)

After the last transformation we observe that

A

[4]
x,0 = 0 = A

[4]
y,0 . (2.23)

This means that the basis change of (2.8), with the matrix B given by

B ⌘ B

[0]
B

[1]
B

[2]
B

[3]
B

[4] = e

⌦[A
m

2
,0]

e

⌦[D[0]
x,0]

e

⌦[D[1]
y,0]

e

⌦[N [2]
x,0]

e

⌦[N [3]
y,0]

, (2.24)

absorbs the constant terms of A
x

and A

y

in the ✏-linear systems in (??) and brings them

to the canonical form (2.9):

A

�

(✏,m2
, x, y) ! ✏Â

�

(x, y). (2.25)

We can conveniently combine all di↵erential equations to a total di↵erential

dI = ✏ dÂ I with dÂ = Â

x

dx+ Â

y

dy , (2.26)

which in our case is a sum of d log forms

dA =
nX

i=1

M

i

d log ⌘
i

(2.27)

2.3 Iterated Integrals

[Ste: the subsubsections are temporary, just while I type!] [Ste: shouldn’t we

put this in a separate chapter?]

2.3.1 Building the solution

The solution of a canonical system of di↵erential equations (2.26), with given initial con-

ditions I(~x0), can be compactly written at a point4~x = (x1, x2) = (x, y) as

I(~x) = P exp

⇢
✏

Z

�

dA
�
I(~x0) . (2.28)

4 The following discussion holds in n-dimensions, but for simplicity we specialize it to the case of a

2-dimensional space, relevant for our calculation. [Ste: It should hold also in the case of more

general exact di↵erentials df
i

, not just d log ⌘
i

, shouldn’t it? Maybe there are MIs for which

the di↵erential equation is more general than just d log but can still be expressed as iterated

integrals.]
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T1 T2 T3 T4 T5 T6 T7

T8 T9 T10 T11 T12 T13 T14

T15 T16 T17 T18 T19 T20 T21

T22 T23 T24 T25 T26 T27 T28

T29 T30 T31

Hk1-p1+p3L2

Figure 4: Two-loop one-mass Master Integrals {T
i

}
i=1,...,31. The solid lines stand for

massless particles; the dashed line represents a massive particle; dots indicate squared

propagators; numerators may appear as indicated (p
ij

⌘ p

i

+ p

j

).

For definiteness we work in the region 0 < x < 1, 0 < y < 1. Since the alphabet is linear in

x and y, the solution consists of G-polylogarithms and can be obtained by integrating the

di↵erential equation in y first, where x is taken to be constant and then fix the function of

x we missed, by matching its derivative to the di↵erential equation in x.

The boundary constant of integrals I
i=2...5 can be fixed by demanding the regularity of the

pseudothresholds t ! m

2, u ! 0, s ! 0 and their reality in the euclidean region. Integral

I1 can be determined by direct integration and is given by

I1 =
�(1� 2✏)

�(1� ✏)2
(3.6)
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1-Mass

31 MIs 

alphabet: 6 rational letters

solution: GPL’s



T1 T2 T3 T4 T5 T6 T7 T8

T9 T10 T11 T12 T13 T14 T15 T16

T17 T18 T19 T20 T21 T22 T23 T24

T25 T26 T27 T28 T29 T30 T31 T32

T33 T34

Hk1+k2L2

T35

Hk1-p1+p3L2

T36

Hk1+k2L2Hk1-p1+p3L2

Figure 6: Two-loop two-mass Master Integrals {T
i

}
i=1,...,36. The solid lines stand for

massless particles; the dashed line represents a massive particle; dots indicate squared

propagators

which rationalize after a variable transformation of the form

� s

m

2
=

(1� w)2

w

� t

m

2
=

w(1 + z)2

(1 + w)2z
.

(4.4)

Combining the di↵erential equations in w and z into a total di↵erential we find a dlog-form

(2.27) with the alphabet

⌘1 = z, ⌘2 = 1 + z, ⌘3 = 1� z,

⌘4 = w, ⌘5 = 1 + w, ⌘6 = 1� w,

⌘7 = z � w, ⌘8 = z + w

2
⌘9 = 1� w z

⌘10 = 1 + w

2
z, (4.5)
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2-Mass

36 MIs 

alphabet: 12 rational + 5 irrational letters

solution: Iterated integrals 
:: semi-analytic results for      :: numerical boundary conditions



Summary and Outlook

 Multi-Loop Integrand Reduction

 Multi-Loop Master Integrals evaluation 

Complete Development :: for generic kinematics

Differential Equations (analytic as well as numerical) :: Magnus Exponential

 

 

Numerical methods also very promising

  IntegrANDS

  IntegrALS

Applying symmetries to the coefficients w/in the integrand decomposition

BCJ relations @ 1-Loop

Exploiting DimReg :: Adaptive Unitarity and Transverse space integration

Fazio, Mirabella, Torres, PM (2014)

Primo, Schubert, Torres, PM (2015)

Primo, Torres (2016)

Chester (2016)

FDF: simple implementation of FDH scheme for generalised unitarity cuts

BCJ relations @ tree-level in DimReg w/in FDF

MI’s in different dimensions ==> Adaptive Differential Equations?

exploiting Path invariance 

any loop :: we are at the same point as OPP for 1-loop.



Simplicity is the dawn of Discoveries

 Factorization
Find a region in the parameter space where the answer look simple

to go from simple to complex configuration

 

  Evolution algorithms :: Unitarity :: Recurrence Relation, Differential Equations, Exponentials 
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 Factorization

 Evolution algorithms :: Unitarity :: Recurrence Relation, Differential Equations, Exponentials 

Find a region in the parameter space where the answer look simple

to go from simple to complex configuration

 A(nother) beautiful, simple, innocent equation

where φ(p, k) is a phase which a priori depends on the vector momentum p, and on the reference
momentum k. If we set this phase to zero, it is easy to show that that the change in the polarization
vector caused by a change in the reference momentum is given by:

ε+µ (p, k) → ε+µ (p, k′) −
√

2
〈kk′〉

〈kp〉〈k′p〉
pµ. (2.23)

Note that for this choice of φ(p, k) the a priori phase factor in front of ε+µ (p, k′) is equal to unity
in this equation. A similar result holds for the negative helicity vectors. Therefore the choice of
polarization vectors used through out this review is

ε±µ (p, k) = ±
〈p ±| γµ |k±〉√

2〈k ∓|p±〉
. (2.24)

Using this representation, (2.24), for the polarization vectors in the calculation of a given ampli-
tude, we can choose not only a different reference momentum k for each polarization vector in the
process, but we can also choose different reference momenta for each gauge invariant part of the full
amplitude, without having to worry about relative phases. This property will be used extensively in
the following applications, where we will decompose each amplitude into a sum over gauge invariant
components.

A proper assignment of reference momenta to the different external vectors will result in signif-
icant simplifications. As an example, by using Eqs.(2.12),(2.9) one can easily prove the following
identities:

ε+(p, k) · ε+(p′, k) = ε+(p, k) · ε−(k, k′) = 0 (2.25)

These identities suggest that it is convenient to choose the reference momenta of like-helicity vectors
to be the same and to coincide with the external momenta of some of the vectors with the opposite
helicity.

The representation (2.24) for the polarizations is also particularly helpful when calculating
processes with external fermions in addition to the vectors. The polarization vectors contract
with the gamma matrices in the following way:

ε±(p, k) · γ = ±
√

2

〈k ∓|p±〉
( |p∓〉〈k ∓| + |k±〉〈p ±| ). (2.26)

An explicit example of the use of these formulas for the simple case of e+e− annihilation into two
photons is given in the Appendix.

As a final comment, we add that the gauges generated by this choice of polarization vectors are
equivalent to axial gauges. In fact it is straightforward to prove on the basis of the identities given
here and in the Appendix, that:

∑

pol

ελµ (ελν)
∗ = ε+µ (p, k) ε−ν (p, k) + ε−µ (p, k) ε+ν (p, k) = −gµν +

pµkν + pνkµ

p · k
. (2.27)

Because of this reason, we will expect these gauges to make calculations particularly simple when
studying matrix elements in the eikonal approximation.

The representation of polarization vectors in terms of spinors has been generalized to the case
of massive particles of spin 1/2, 1 and 3/2 in Ref.[82].
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  Momentum twistors

Mangano Parke

  Color/Kinematics duality


