# Adaptive Unitarity and Magnus Exponential for Scattering Ampliftudes 

MHV @ 30, FermiLab<br>18.3.2016

Pierpaolo Mastrolia

## Motivation

©Amplitudes \& Phenomenology
© masses do matter
Enon-planar diagrams may contribute
$\notin$ integrals diverge
©from the beauty of simple formulas (in special kinematics)
to the beauty of the structures (in arbitrary kinematics)

## Path

Multiloop Integrand Decomposition: exploiting dimensional regularisation
Magnus Series for Master Integrals

## High Energy Physics Goals: Loops vs Legs



## Complexity: Loops vs Legs



## Complexity: Loops vs Legs



## Why is it all that difficult?

## Feynman Diagrams ~ The realm of Integral Calculus



## Why is it all that difficult?

Feynman Diagrams ~ The realm of Integral Calculus


Turning Integral Calculus into an Algebraic Problem


## Amplitudes Decomposition:

## the algebraic way



$$
\mathbf{a}=a x \mathbf{i}+a y \mathbf{j}+a z k
$$

${ }_{\$}$ Basis: $\{\mathrm{ij} \mathrm{jk}$
\&scalar product/Projection: to extract the components

$$
\begin{aligned}
& a_{x}=\mathbf{a} . \mathbf{i} \\
& a_{y}=\mathbf{a} \cdot \mathbf{j} \\
& a_{z}=\mathbf{a} \cdot k
\end{aligned}
$$



## Projections :: On-Shell Cut-Conditions



## Completeness Relations: cutting " 1 "

- the richness of factorization

$$
i(-i)=1
$$

$$
\sum_{n}\left|\psi_{0}\right\rangle\left\langle\left\langle_{0}\right|=1\right.
$$

$$
\left(p^{2}-m^{2}\right)=(\not p-m)(\not p+m)
$$

$$
\varepsilon^{\mu \nu}=\varepsilon^{\mu} \varepsilon^{\nu}
$$

## Completeness Relations: cutting " 1 "

- the richness of factorization


SuperGravity @ 40
MHV @ 30
TASI lectures @ 20

## Integrand-Reduction@10

unitarity at integrand level
Ossola Papadopoulos Pittau (2006)
Ellis Giele Kunszt Melnikov (2007)
Ossola \& P.M. (2011)
Badger, Frellesvig, Zhang (2011)
Zhang (2012)
Mirabella, Ossola, Peraro, \& P.M. (2012)

## One-Loop Integrand Decomposition

$\mathcal{A}_{n}^{\text {one-loop }}=\int d^{-2 \epsilon} \mu \int d^{4} q A_{n}\left(q, \mu^{2}\right), \quad A_{n}\left(q, \mu^{2}\right) \equiv \frac{\mathcal{N}_{n}\left(q, \mu^{2}\right)}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{n-1}} \quad \bar{D}_{i}=\left(\bar{q}+p_{i}\right)^{2}-m_{i}^{2}=\left(q+p_{i}\right)^{2}-m_{i}^{2}-\mu^{2}$

We use a bar to denote objects living in $d=4-2 \epsilon$ dimensions

$$
\phi=\not q+\mu, \quad \text { with } \quad \bar{q}^{2}=q^{2}-\mu^{2} .
$$



- @ the integrand-level

$$
\begin{aligned}
& A_{n}\left(q, \mu^{2}\right) \neq \frac{c_{5,0}}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2} \bar{D}_{3} \bar{D}_{4}}+\frac{c_{4,0}+c_{4,4} \mu^{4}}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2} \bar{D}_{3}}+\frac{c_{3,0}+c_{3,7} \mu^{2}}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2}}+\frac{c_{2,0}+c_{2,9} \mu^{2}}{\bar{D}_{0} \bar{D}_{1}}+\frac{c_{1,0}}{\bar{D}_{0}} \\
& \quad=\frac{c_{5,0}+f_{01234}\left(q, \mu^{2}\right)}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2} \bar{D}_{3} \bar{D}_{4}}+\frac{c_{4,0}+c_{4,4} \mu^{4}+f_{0123}\left(q, \mu^{2}\right)}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2} \bar{D}_{3}}+\frac{c_{3,0}+c_{3,7} \mu^{2}+f_{012}\left(q, \mu^{2}\right)}{\bar{D}_{0} \bar{D}_{1} \bar{D}_{2}}+\frac{c_{2,0}+c_{2,9} \mu^{2}+f_{01}\left(q, \mu^{2}\right)}{\bar{D}_{0} \bar{D}_{1}}+\frac{c_{1,0}+f_{0}\left(q, \mu^{2}\right)}{\bar{D}_{0}}
\end{aligned}
$$

(V) f's are "spurious" ==> integrate to 0 !!!

## Improved Integrand Red'n

- Integrand Reduction

$$
a+b x+c x \wedge 2+\ldots
$$

Ossola Papadopoulos Pittau

©integrand subtraction required!

$$
\begin{aligned}
& \text { universal } \\
& \begin{array}{l}
\begin{array}{l}
\Delta_{i_{1} \ldots i_{m}}\left(q, \mu^{2}\right)=\operatorname{Res}_{i_{1} \ldots i_{m}} \\
\text { polynomial }
\end{array}\left\{\frac{\mathcal{N}\left(q, \mu^{2}\right)}{\bar{D}_{i_{1}} \bar{D}_{i_{2}} \ldots \bar{D}_{i_{n}}}-\sum_{k=(m+1)}^{5} \sum_{i_{1}<i_{2}<\ldots<i_{k}} \frac{\Delta_{i_{1} i_{2} \ldots i_{k}}\left(q, \mu^{2}\right)}{\bar{D}_{i_{1}} \bar{D}_{i_{2}} \ldots \bar{D}_{i_{k}}}\right\} \\
\text { non-polynomial }
\end{array}
\end{aligned}
$$

## Improved Integrand Red'n

Integrand Reduction with Laurent series expansion Forde; Kilgore; Badger;


$\notin$ coefficients of MI's :: $a=a^{\prime}+a^{\prime \prime}$
LLaurent series implemented via univariate Polynomial Division

### 2.2.2 Quintuple cut

The residue of the quintuple-cut, $\bar{D}_{i}=\ldots=\bar{D}_{m}=0$, defined as,

$$
\Delta_{i j k \ell m}(\bar{q})=\operatorname{Res}_{i j k \ell m}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}\right\}=c_{5,0}^{(i j k \ell m)} \mu^{2} .
$$

### 2.2.3 Quadruple cut

The residue of the quadruple-cut, $\bar{D}_{i}=\ldots=\bar{D}_{\ell}=0$, defined as,
$\Delta_{i j k \ell}(\bar{q})=\operatorname{Res}_{i j k \ell}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}-\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k \ell m}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}\right\}=c_{4,0}^{(i j k \ell)}+c_{4,2}^{(i j k \ell)} \mu^{2}+c_{4,4}^{(i j k \ell)} \mu^{4}-\left(c_{4,1}^{(i j k \ell)}+c_{4,3}^{(i j k \ell)} \mu^{2}\right)\left[\left(K_{3} \cdot e_{4}\right) x_{4}-\left(K_{3} \cdot e_{3}\right) x_{3}\right]\left(e_{1} \cdot e_{2}\right)$,

### 2.2.4 Triple cut

The residue of the triple-cut, $\bar{D}_{i}=\bar{D}_{j}=\bar{D}_{k}=0$, defined as,
$\Delta_{i j k}(\bar{q})=\operatorname{Res}_{i j k}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}-\sum^{n-1} \frac{\Delta_{i j k \ell m}(\bar{q})}{\bar{D}_{i} \bar{D}_{i} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}-\sum^{n-1} \frac{\Delta_{i j k \ell}(\bar{q})}{\bar{D}_{i} \bar{D}_{i} \bar{D}_{k} \bar{D}_{\ell}}\right\}$

## SAMURAI Ossola Reiefer Tamonanoo P.M. عov10)

${ }_{7}^{2 .}$ Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level

$$
=c_{2,0}^{(i j)}+c_{2,9}^{(i j)} \mu^{2}+\left(c_{2,1}^{(i j)} x_{1}-c_{2,3}^{(i j)} x_{4}-c_{2,5}^{(i j)} x_{3}\right)\left(e_{1} \cdot e_{2}\right)+\left(c_{2,2}^{(i j)} x_{1}^{2}+c_{2,4}^{(i j)} x_{4}^{2}+c_{2,6}^{(i j)} x_{3}^{2}-c_{2,7}^{(i j)} x_{1} x_{4}-c_{2,8}^{(i j)} x_{1} x_{3}\right)\left(e_{1} \cdot e_{2}\right)^{2} .
$$

### 2.2.6 Single cut

The residue of the single-cut, $\bar{D}_{i}=0$, defined as,

$$
\begin{aligned}
\Delta_{i}(\bar{q}) & =\operatorname{Res}_{i}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}-\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k \ell m}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}-\sum_{i \ll \ell}^{n-1} \frac{\Delta_{i j k \ell}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell}}-\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k}}-\sum_{i<j}^{n-1} \frac{\Delta_{i j}(\bar{q})}{\bar{D}_{i} \bar{D}_{j}}\right\} \\
& =c_{1,0}^{(i)}+\left(c_{1,1}^{(i)} x_{2}+c_{1,2}^{(i)} x_{1}-c_{1,3}^{(i)} x_{4}-c_{1,4}^{(i)} x_{3}\right)\left(e_{1} \cdot e_{2}\right)
\end{aligned}
$$

### 2.2.2 Quintuple cut

The residue of the quintuple-cut, $\bar{D}_{i}=\ldots=\bar{D}_{m}=0$, defined as,

$$
\Delta_{i j k \ell m}(\bar{q})=\operatorname{Res}_{i j k \ell m}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}\right\}=c_{5,0}^{(i j k \ell m)} \mu^{2} .
$$

### 2.2.3 Quadruple cut

The residue of the quadruple-cut, $\bar{D}_{i}=\ldots=\bar{D}_{\ell}=0$, defined as,
$\Delta_{i j k \ell}(\bar{q})=\operatorname{Res}_{i j k \ell}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}-\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k \ell m}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}\right\}=c_{4,0}^{(i j k \ell)}+c_{4,2}^{(i j k \ell)} \mu^{2}+c_{4,4}^{(i j k \ell)} \mu^{4}-\left(c_{4,1}^{(i j k \ell)}+c_{4,3}^{(i j k \ell)} \mu^{2}\right)\left[\left(K_{3} \cdot e_{4}\right) x_{4}-\left(K_{3} \cdot e_{3}\right) x_{3}\right]\left(e_{1} \cdot e_{2}\right)$,

### 2.2.4 Triple cut

The residue of the triple-cut, $\bar{D}_{i}=\bar{D}_{j}=\bar{D}_{k}=0$, defined as,
$\Delta_{i j k}(\bar{q})=\operatorname{Res}_{i j k}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}-\sum^{n-1} \frac{\Delta_{i j k \ell m}(\bar{q})}{\bar{D}_{i} \bar{D}_{i} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}-\sum_{n=n}^{n-1} \frac{\Delta_{i j k \ell}(\bar{q})}{\bar{D}_{i} \bar{D}_{i} \bar{D}_{k} \bar{D}_{\ell}}\right\}$
SAMURAI
Ossola Reiter Tramontano P.M. (2010)


## Integrand decomposition via Laurent expansion



### 2.2.6 Single cut

The residue of the single-cut, $\bar{D}_{i}=0$, defined as,

$$
\begin{aligned}
\Delta_{i}(\bar{q}) & =\operatorname{Res}_{i}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}-\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k \ell m}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}-\sum_{i \ll \ell}^{n-1} \frac{\Delta_{i j k \ell}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell}}-\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k}}-\sum_{i<j}^{n-1} \frac{\Delta_{i j}(\bar{q})}{\bar{D}_{i} \bar{D}_{j}}\right\} \\
& =c_{1,0}^{(i)}+\left(c_{1,1}^{(i)} x_{2}+c_{1,2}^{(i)} x_{1}-c_{1,3}^{(i)} x_{4}-c_{1,4}^{(i)} x_{3}\right)\left(e_{1} \cdot e_{2}\right)
\end{aligned}
$$

## The GoSam Project

Cullen van Deurzen Greiner Heinrich Luisoni Mirabella Ossola Peraro Reichel Schlenk von Soden-Fraunhofen Tramontano P.M.


MC Interfaces
Beyond SM EW Physics

Top Physics

## The path to Hjjj @ NLO

## Challenges

- effective Hgg-coupling:

higher rank :: r < $\mathrm{n}+2$
the rank $r$ of the numerator can be larger than the number $n$ of denominators

■ Extending the Polynomial Residues


- Over 10,000 diagrams
- Higher-Rank terms
- 60 Rank-7 hexagons


## pp --> Hjjj with GoSam

©Hjj with GoSam + Sherpa (Amegic)
vanDeurzen Greiner Luisoni Mirabella Ossola Peraro vonSodenFraunhofen Tramontano \& P.M.
Hjjj with GoSam + Sherpa + MadGraph4
Cullen VanDeurzen Greiner Luisoni Mirabella Ossola Peraro Tramontano \& P.M.
\$Hjjj (virtual) with GoSam2.0: improved reduction (Ninja) vanDeurzen Luisoni Mirabella Ossola Peraro \& P.M.

## $\underset{\&}{\mathscr{L}} \mathrm{Hj}, \mathrm{Hjj}, \mathrm{Hjjj}$ with GoSam2.0 + Sherpa (Comix): a new analysis

Greiner Hoecke Luisoni Schoenherr Winter Yundin

- Cuts: 8 TeV , anti-kt $R=0.4$ jets with $p_{T}>30 \mathrm{GeV},|\eta|<4.4$
- PDF: CT10nlo for LO, CT10nlo for NLO
$\hat{H}_{T}=\sqrt{m_{H}^{2}+p_{T, H}^{2}}+\sum_{i}^{\text {partons }} p_{T, i}$




## GoSam + Ninja: more app's

van Deurzen Luisoni Mirabella Ossola Peraro P.M. (2013) Peraro (2014)

| Benchmarks: GoSam + NinJA |  |  |  |
| :---: | :---: | :---: | :---: |
| Process |  | \# NLO diagrams | ms/event |
| $W+3 j$ | $d \bar{u} \rightarrow \bar{\nu}_{e} e^{-} g g g$ | 1411 | 226 |
| $Z+3 j$ | $d \bar{d} \rightarrow e^{+} e^{-} g g g$ | 2928 | 1911 |
| $Z Z Z+1 j$ | $u \bar{u} \rightarrow Z Z Z g$ | 915 | *12 000 |
| $W W Z+1 j$ | $u \bar{u} \rightarrow W^{+} W^{-} Z g$ | 779 | *7050 |
| $W Z Z+1 j$ | $u \bar{d} \rightarrow W^{+} Z Z g$ | 756 | *3 300 |
| $W W W+1 j$ | $u \bar{d} \rightarrow W^{+} W^{-} W^{+} g$ | 569 | *1800 |
| Z Z Z Z | $u \bar{u} \rightarrow Z Z Z Z$ | 408 | *1070 |
| $W W W W$ | $u \bar{u} \rightarrow W^{+} W^{-} W^{+} W^{-}$ | 496 | *1350 |
| $t \bar{t} b \bar{b}\left(m_{b} \neq 0\right)$ | $d \bar{d} \rightarrow t \bar{t} b \bar{b}$ | 275 | 178 |
|  | $g g \rightarrow t \bar{t} b \bar{b}$ | 1530 | 5685 |
| $t \bar{t}+2 j$ | $g g \rightarrow t \bar{t} g g$ | 4700 | 13827 |
| $Z b \bar{b}+1 j\left(m_{b} \neq 0\right)$ | $d u g \rightarrow u e^{+} e^{-} b \bar{b}$ | 708 | *1070 |
| $W b \bar{b}+1 j\left(m_{b} \neq 0\right)$ | $u \bar{d} \rightarrow e^{+} \nu_{e} b \bar{b} g$ | 312 | 67 |
| $W b \bar{b}+2 j\left(m_{b} \neq 0\right)$ | $u \bar{d} \rightarrow e^{+} \nu_{e} b \bar{b} s \bar{s}$ | 648 | 181 |
|  | $u \bar{d} \rightarrow e^{+} \nu_{e} b \bar{b} d \bar{d}$ | 1220 | 895 |
|  | $u \bar{d} \rightarrow e^{+} \nu_{e} b \bar{b} g g$ | 3923 | 5387 |
| $W W b \bar{b}\left(m_{b} \neq 0\right)$ | $d \bar{d} \rightarrow \nu_{e} e^{+} \bar{\nu}_{\mu} \mu^{-} b \bar{b}$ | 292 | 115 |
|  | $g g \rightarrow \nu_{e} e^{+} \bar{\nu}_{\mu} \mu^{-} b \bar{b}$ | 1068 | *5300 |
| $W W b \bar{b}+1 j\left(m_{b}=0\right)$ | $u \bar{u} \rightarrow \nu_{e} e^{+} \bar{\nu}_{\mu} \mu^{-} b \bar{b} g$ | 3612 | *2000 |
| $H+3 j$ in GF | $g g \rightarrow H g g g$ | 9325 | 8961 |
| $t \bar{t} Z+1 j$ | $u \bar{u} \rightarrow t \bar{t} e^{+} e^{-} g$ | 1408 | 1220 |
|  | $g g \rightarrow t \bar{t} e^{+} e^{-} g$ | 4230 | 19560 |
| $t \bar{t} H+1 j$ | $g g \rightarrow t \bar{t} H g$ | 1517 | 1505 |
| $H+3 j$ in VBF | $u \bar{u} \rightarrow H g u \bar{u}$ | 432 | 101 |
| $H+4 j$ in VBF | $u \bar{u} \rightarrow H g g u \bar{u}$ | 1176 | 669 |
| $H+5 j$ in VBF | $u \bar{u} \rightarrow H g g g u \bar{u}$ | 15036 | 29200 |

faster, higher accuracy, more stable, no-problem with multiple masses
$==-$
8-particle with internal and external masses

Table 2: A summary of results obtained with GoSam+Ninja. Timings refer to full color- and helicity-summed amplitudes, using an Intel Core i7 CPU @ 3.40 GHz , compiled with ifort. The timings indicated with an $\left(^{*}\right.$ ) are obtained with an $\operatorname{Intel}(\mathrm{R}) \mathrm{Xeon}(\mathrm{R}) \mathrm{CPU}$ E5-2650 0 @ 2.00 GHz , compiled with gfortran.

## Towards Higher Loop

$\square$ Problem: what is the form of the residues?


= ?


Polynomials

Q"find the right variables encoding the cut-structure"
\& variables

- ISP's = Irreducible Scalar Products:
- $q$-components which can variate under cut-conditions
- spurious: vanishing upon integration
- non-spurious: non-vanishing upon integration $\Rightarrow$ MI's

Zhang (2012); Badger Frellesvig Zhang (2012) Mirabella, Ossola, Peraro, \& P.M. (2012)

- Quantum Field Theory

Unitarity-Cuts, Vanishing denominators
Cut-residue
Amplitudes factorization in tree-amplitudes

Amplitude decomposition

- Algebraic Geometry
${ }_{\Phi}$ Polynomial equations, ideals
Remainder of polynomial division
$\notin$ Polynomials in quotient rings

Multivariate Polynomial division

## Multivariate Polynomial Division

Zhang (2012); Badger Frellesvig Zhang (2012) Mirabella, Ossola, Peraro, \& P.M. (2012)

\$Ideal

$$
\mathcal{J}_{i_{1} \cdots i_{n}}=\left\langle D_{i_{1}}, \cdots, D_{i_{n}}\right\rangle \equiv\left\{\sum_{\kappa=1}^{n} h_{\kappa}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z}): h_{\kappa}(\mathbf{z}) \in P[\mathbf{z}]\right\}
$$

Groebner Basis

$$
\begin{aligned}
& \mathcal{G}_{i_{1} \cdots i_{n}}=\left\{g_{1}(\mathbf{z}), \ldots, g_{m}(\mathbf{z})\right\} \\
& \mathcal{J}_{i_{1} \ldots i_{n}}=\left\langle g_{1}, \ldots, g_{m}\right\rangle \equiv\left\{\sum_{\kappa=1}^{m} \tilde{h}_{\kappa}(\mathbf{z}) g_{\kappa}(\mathbf{z}): \tilde{h}_{\kappa}(\mathbf{z}) \in P[\mathbf{z}]\right\} \\
& D_{i_{1}}=\ldots=D_{i_{n}}=0 \quad \Leftrightarrow \quad g_{1}=\ldots=g_{m}=0
\end{aligned}
$$

## Multivariate Polynomial Division

Zhang (2012); Badger Frellesvig Zhang (2012) Mirabella, Ossola, Peraro, \& P.M. (2012)
\%ideal

$$
\mathcal{J}_{i_{1} \cdots i_{n}}=\left\langle D_{i_{1}}, \cdots, D_{i_{n}}\right\rangle \equiv\left\{\sum_{\kappa=1}^{n} h_{\kappa}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z}): h_{\kappa}(\mathbf{z}) \in P[\mathbf{z}]\right\}
$$

GGroebner Basis

$$
\begin{aligned}
\mathcal{G}_{i_{1} \ldots i_{n}} & =\left\{g_{1}(\mathbf{z}), \ldots, g_{m}(\mathbf{z})\right\} \\
\mathcal{J}_{i_{1} \ldots i_{n}} & =\left\langle g_{1}, \ldots, g_{m}\right\rangle \equiv\left\{\sum_{\kappa=1}^{m} \tilde{h}_{\kappa}(\mathbf{z}) g_{\kappa}(\mathbf{z}): \tilde{h}_{\kappa}(\mathbf{z}) \in P[\mathbf{z}]\right\}
\end{aligned}
$$

$n$-ple cut-conditions

$$
D_{i_{1}}=\ldots=D_{i_{n}}=0 \quad \Leftrightarrow \quad g_{1}=\ldots=g_{m}=0
$$

§Polynomial Division

$$
\mathcal{N}_{i_{1} \cdots i_{n}}(\mathbf{z})=\Gamma_{i_{1} \cdots i_{n}}+\Delta_{i_{1} \cdots i_{n}}(\mathbf{z}),
$$

## $\mathscr{Q}$ Remainder ~Residue $\quad \Delta_{i_{1} \cdots i_{n}}(\mathbf{z})$

Quotients

$$
\begin{aligned}
\Gamma_{i_{1} \cdots i_{n}} & =\sum_{i=1}^{m} \mathcal{Q}_{i}(\mathbf{z}) g_{i}(\mathbf{z}) \quad \text { belongs to the ideal } \mathcal{J}_{i_{1} \cdots i_{n}} \\
& =\sum_{\kappa=1}^{n} \mathcal{N}_{i_{1} \cdots i_{\kappa-1} i_{\kappa+1} \cdots i_{n}}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z})
\end{aligned}
$$

## Multi-Loop Integrand Recurrence

$$
\frac{\mathcal{N}_{i_{1} \ldots i_{n}}}{D_{i_{1}} \cdots D_{i_{n}}}=\sum_{\kappa=1}^{n} \frac{\mathcal{N}_{i_{1} \ldots i_{\kappa-1} i_{\kappa+1} \ldots i_{n}} D_{i_{\kappa}}}{D_{i_{1}} \cdots D_{i_{\kappa-1}} D_{i_{\kappa}} D_{i_{\kappa+1}} \cdots D_{i_{n}}}+\frac{\Delta_{i_{1} \ldots i_{n}}}{D_{i_{1}} \cdots D_{i_{n}}}
$$

## Multi-Loop Integrand Recurrence

Mirabella, Ossola, Peraro, \& P.M. (2012)

$$
\frac{\mathcal{N}_{i_{1} \ldots i_{n}}}{D_{i_{1}} \cdots D_{i_{n}}}=\sum_{\kappa=1}^{n} \frac{\mathcal{N}_{i_{1} \ldots i_{\kappa-1} i_{\kappa+1} \ldots i_{n}} D_{i_{\kappa}}}{D_{i_{1}} \cdots D_{i_{\kappa-1}} D i_{i_{\kappa}} D_{i_{\kappa+1}} \cdots D_{i_{n}}}+\frac{\Delta_{i_{1} \ldots i_{n}}}{D_{i_{1}} \cdots D_{i_{n}}}
$$



## Multi-Loop Integrand Recurrence

Mirabella, Ossola, Peraro, \& P.M. (2012)

- l-Loop Recurrence Relation


IV all orders (any number of loops and legs)
IV any topology (planar and non-planar)
I all kinematics (massless and massive)
[] high-power of denominators

## Multi-Loop Integrand Decomposition

IDivide \& Conquer approach
$\mathcal{I}_{i_{1} \cdots i_{n}}=\frac{\mathcal{N}_{i_{1} \cdots i_{n}}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{n}}}$
$\mathcal{I}_{i_{1} \cdots i_{n}}=\sum_{1=i_{1} \ll i_{\max }}^{n} \frac{\Delta_{i_{1} i_{2} \ldots i_{\max }}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\max }}}+\sum_{1=i_{1} \ll i_{\max }-1}^{n} \frac{\Delta_{i_{1} i_{2} \ldots i_{\max }-1}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\max }-1}}$

$$
+\sum_{1=i_{1} \ll i_{\max }-2}^{n} \frac{\Delta_{i_{1} i_{2} \ldots i_{\max }-2}}{D_{i_{1}} D_{i_{2}} \cdots D_{i_{\max }-2}}+\cdots \cdots+\sum_{1=i_{1}<i_{2}}^{n} \frac{\Delta_{i_{1} i_{2}}}{D_{i_{1}} D_{i_{2}}}+\sum_{1=i_{1}}^{n} \frac{\Delta_{i_{1}}}{D_{i_{1}}}+Q_{\emptyset}
$$

## The Maximum-Cut Theorem

At any loop $\ell$, loops we define maximum cut as the set of vanishing denominators

$$
D_{0}=D_{1}=\ldots=0
$$

which constrains completely the components of the loop momenta. 0-dimensional We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number $n_{s}$ of solutions, each with multiplicity one.
Then,

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial paramatrised by $n_{s}$ coefficients, which admits a univariate representation of degree $\left(n_{s}-1\right)$.

## Examples of Maximum-Cuts

| diagram | $\Delta$ | $n_{s}$ | diagram | $\Delta$ | $n_{s}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $c_{0}$ | 1 | $\square$ | $c_{0}+c_{1} z$ | 2 |
|  | $\sum_{i=0}^{3} c_{i} z^{i}$ | 4 |  | $\sum_{i=0}^{3} c_{i} z^{i}$ | 4 |
| $\square$ | $\sum_{i=0}^{7} c_{i} z^{i}$ | 8 |  | $\sum_{i=0}^{7} c_{i} z^{i}$ | 8 |





## One-Loop Integrand Decomposition $d=4-2 \epsilon$

- Choice of 4-dimensional basis for an m-point residue

$$
e_{1}^{2}=e_{2}^{2}=0, \quad e_{1} \cdot e_{2}=1, \quad e_{3}^{2}=e_{4}^{2}=\delta_{m 4}, \quad e_{3} \cdot e_{4}=-\left(1-\delta_{m 4}\right)
$$

- Coordinates: $\mathbf{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \equiv\left(x_{1}, x_{2}, x_{3}, x_{4}, \mu^{2}\right)$

$$
q_{4-\operatorname{dim}}^{\mu}=-p_{i_{1}}^{\mu}+x_{1} e_{1}^{\mu}+x_{2} e_{2}^{\mu}+x_{3} e_{3}^{\mu}+x_{4} e_{4}^{\mu}, \quad q^{2}=q_{4-\operatorname{dim}}^{2}-\mu^{2}
$$

- Generic numerator

$$
\mathcal{N}_{i_{1} \cdots i_{m}}=\sum_{j_{1}, \ldots, j_{5}} \alpha_{\dot{j}} z_{1}^{j_{1}} z_{2}^{j_{2}} z_{3}^{j_{3}} z_{4}^{j_{4}} z_{5}^{j_{5}}, \quad\left(j_{1} \ldots j_{5}\right) \quad \text { such that } \quad \operatorname{rank}\left(\mathcal{N}_{i_{1} \cdots i_{m}}\right) \leq m
$$

- Residues

$$
\begin{array}{rlr}
\Delta_{i_{1} i_{2} i_{3} i_{4} i_{5}} & =c_{0} & \text { Ossola Papadopoulos Pittau } \\
\Delta_{i_{1} i_{2} i_{3} i_{4}} & =c_{0}+c_{1} x_{4}+\mu^{2}\left(c_{2}+c_{3} x_{4}+\mu^{2} c_{4}\right) & \text { Ellis Giele Kunszt Melnikov } \\
\Delta_{i_{1} i_{2} i_{3}} & =c_{0}+c_{1} x_{3}+c_{2} x_{3}^{2}+c_{3} x_{3}^{3}+c_{4} x_{4}+c_{5} x_{4}^{2}+c_{6} x_{4}^{3}+\mu^{2}\left(c_{7}+c_{8} x_{3}+c_{9} x_{4}\right) \\
\Delta_{i_{1} i_{2}} & =c_{0}+c_{1} x_{2}+c_{2} x_{3}+c_{3} x_{4}+c_{4} x_{2}^{2}+c_{5} x_{3}^{2}+c_{6} x_{4}^{2}+c_{7} x_{2} x_{3}+c_{9} x_{2} x_{4}+c_{9} \mu^{2} \\
\Delta_{i_{1}} & =c_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4} &
\end{array}
$$



## Longitudinal and Transverse Space

- Dimensional Regularization

$$
d=4-2 \epsilon
$$

- if n-legs < 5

$$
\begin{aligned}
& \qquad d=d / /+d \perp \\
& \text { Longitudinal space } \\
& \text { spanned by the } \\
& \text { (independent) legs }
\end{aligned}
$$

I Denominators do not depend on "the angular variables" of the Transverse Space $\Omega_{\perp}$
I- Numerators depend on "all" loop variables

## Integrating over Transverse Angles

## - Spherical Coordinates

$$
\text { @@ 1-loop } \quad I_{1}=\int d^{n} \boldsymbol{\lambda} \mathcal{I}_{1}(\boldsymbol{\lambda}), \quad n=d_{\perp}
$$

$$
\begin{aligned}
\boldsymbol{\lambda}=\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}, \quad \mathbf{v}_{i} \cdot \mathbf{v}_{j}=\delta_{i j} . & \mathcal{I}_{1}(\boldsymbol{\lambda}) \equiv \mathcal{I}_{1}\left(\lambda^{2},\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}\right) . \\
& \begin{cases}a_{1} & =\lambda \cos \theta_{1} \\
a_{2} & =\lambda \sin \theta_{1} \cos \theta_{2} \\
& \cdots \\
a_{k} & =\lambda \cos \theta_{k} \prod_{i=1}^{k-1} \sin \theta_{i} .\end{cases}
\end{aligned}
$$

$$
I_{1}=\frac{\pi^{\frac{n-k}{2}}}{\Gamma\left(\frac{n-k}{2}\right)} \int_{0}^{\infty} d \lambda^{2}\left(\lambda^{2}\right)^{\frac{n-2}{2}} \prod_{i=1}^{k} \int_{-1}^{1} d \cos \theta_{i}\left(\sin \theta_{i}\right)^{n-i-2} \mathcal{I}_{1}\left(\lambda^{2},\left\{\cos \theta_{i}, \sin \theta_{i}\right\}\right)
$$

## Integrating over Transverse Angles

Peraro Primo P.M. (to appear)

## - Spherical Coordinates

$$
\text { Q@ 2-loop } \quad I_{2}=\int d^{n} \boldsymbol{\lambda}_{1} d^{n} \boldsymbol{\lambda}_{2} \mathcal{I}_{2}\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}\right), \quad n=d_{\perp}
$$

$$
\boldsymbol{\lambda}_{1}=\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}, \quad \boldsymbol{\lambda}_{2}=\sum_{i=1}^{n} b_{i} \mathbf{v}_{i} . \quad \lambda_{i j}=\boldsymbol{\lambda}_{i} \cdot \boldsymbol{\lambda}_{j} \quad \mathcal{I}_{2}\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}\right)=\mathcal{I}_{2}\left(\lambda_{i j},\left\{a_{1}, a_{2}, \ldots, a_{k}\right\},\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}\right) .
$$

$$
\begin{aligned}
I_{2}= & \frac{(2 \pi)^{n-k-1}}{2 \Gamma(n-k-1)} \int_{0}^{\infty} d \lambda_{11}\left(\lambda_{11}\right)^{\frac{n-2}{2}} \int_{0}^{\infty} d \lambda_{22}\left(\lambda_{22}\right)^{\frac{n-2}{2}} \int_{-1}^{1} d \cos \theta_{12}\left(\sin \theta_{12}\right)^{n-3} \times \\
& \int_{-1}^{1} \prod_{i=1}^{k} d \cos \theta_{i 1} d \cos \theta_{i+12}\left(\sin \theta_{i 1}\right)^{n-i-2}\left(\sin \theta_{i+12}\right)^{n-i-3} \mathcal{I}_{2}\left(\lambda_{11}, \lambda_{22},\left\{\cos \theta_{i 1,2}, \sin \theta_{i 1,2}\right\}\right)
\end{aligned}
$$

@ @ higher-loop... as well

## Gegenbauer Polynomials

- Orthogonal polynomials
orthogonal polynomials over the interval $[-1,1]$
weight function

$$
\omega_{\alpha}(x)=\left(1-x^{2}\right)^{\alpha-\frac{1}{2}}
$$

generating function

$$
\frac{1}{\left(1-2 x t+t^{2}\right)^{\alpha}}=\sum_{n=1}^{\infty} C_{n}^{(\alpha)}(x) t^{n} .
$$

$$
\begin{aligned}
& C_{0}^{(\alpha)}(x)=1, \\
& C_{1}^{(\alpha)}(x)=2 \alpha x, \\
& C_{2}^{(\alpha)}(x)=-\alpha+2 \alpha(1+\alpha) x^{2},
\end{aligned}
$$

$$
\begin{aligned}
x & =\frac{1}{2 \alpha} C_{0}^{(\alpha)}(x) C_{1}^{(\alpha)}(x), \\
x^{2} & =\frac{1}{4 \alpha^{2}}\left[C_{1}^{(\alpha)}(x)\right]^{2}, \\
x^{3} & =\frac{1}{4 \alpha^{2}(1+\alpha)} C_{1}^{(\alpha)}(x)\left[\alpha C_{0}^{(\alpha)}(x)+C_{2}^{(\alpha)}(x)\right], \\
x^{4} & =\frac{1}{4 \alpha^{2}(1+\alpha)^{2}}\left[\alpha C_{0}^{(\alpha)}(x)+C_{2}^{(\alpha)}(x)\right]^{2},
\end{aligned}
$$

- Orthogonality condition

$$
\int_{-1}^{1} d \cos \theta(\sin \theta)^{2 \alpha-1} C_{n}^{(\alpha)}(\cos \theta) C_{m}^{(\alpha)}(\cos \theta)=\delta_{m n} \frac{2^{1-2 \alpha} \pi \Gamma(n+2 \alpha)}{n!(n+\alpha) \Gamma^{2}(\alpha)}
$$

Integration over Transverse Angles: trivialized @ all-loop!

## One-Loop Integralls d=4-2є

$$
I_{n}^{d}[\mathcal{N}]=\int \frac{d^{d} q}{\pi^{d / 2}} \frac{\mathcal{N}(q)}{\prod_{i=0}^{n-1} D_{i}}, \quad D_{i}=\left(q+\sum_{i=0}^{i} p_{i}\right)^{2}+m_{i j}^{2} \quad p_{0}=0,
$$

Yloop momentum parametrization

$$
q^{\alpha}=q_{[4]}^{\alpha}+\mu^{\alpha}, \quad \quad q_{[4]}^{\alpha}=\sum_{i=1}^{4} x_{i} e_{i}^{\alpha}, \quad \quad q^{2}=q_{[4]}^{2}+\mu^{2}
$$

OIntegration variables

$$
I_{n}^{d}[\mathcal{N}]=\frac{\mathcal{K}}{\pi^{2} \Gamma\left(\frac{d-4}{2}\right)} \int_{-\infty}^{\infty} \prod_{i=1}^{4} d x_{i} \int_{0}^{\infty} d \mu^{2}\left(\mu^{2}\right)^{\frac{d-6}{2}} \frac{\mathcal{N}\left(x_{i}, \mu^{2}\right)}{\prod_{i=0}^{n-1} \mathcal{D}_{i}}
$$

$$
\mathcal{D}_{i}=\left(q_{[4]}+\sum_{j=0}^{i} p_{j}\right)^{2}+\mu^{2}+m_{i}^{2}
$$

$$
\mathcal{K}=\sqrt{\operatorname{det}\left(\frac{\partial q_{[4]}^{\mu}}{\partial x_{i}} \frac{\partial q_{[4] \mu}}{\partial x_{j}}\right)} .
$$

## One-Loop Integrals $\quad d=d_{/ /}+d_{\perp}$

\&loop momentum parametrization

$$
q^{\alpha}=q_{[k]}^{\alpha}+\lambda^{\alpha}, \quad q_{[k]}^{\alpha}=\sum_{j=1}^{k} x_{j} e_{j}^{\alpha}, \quad q^{2}=q_{[k]}^{2}+\lambda^{2},
$$

$k$-dimensional the space spanned by the external momenta

$$
\lambda^{\alpha}=\sum_{j=k+1}^{4} x_{j} e_{j}^{\alpha}+\mu^{\alpha}, \quad \lambda^{2}=\sum_{j=k+1}^{4} x_{j}^{2}+\mu^{2}, \quad(d-k) \text {-dimensional orthogonal subspace. }
$$

$$
I_{n}^{d}[\mathcal{N}]=\frac{1}{\pi^{2} \Gamma\left(\frac{d-4}{2}\right)} \int d^{k} q_{[k]} \int_{0}^{\infty} d \lambda^{2}\left(\lambda^{2}\right)^{\frac{d-k-2}{2}} \prod_{i=1}^{4-k} \int_{-1}^{1} d \cos \theta_{i}\left(\sin \theta_{i}\right)^{d-k-i-2} \frac{\mathcal{N}(q)}{\prod_{i=0}^{n-1} \mathcal{D}_{i}}
$$

$$
\mathcal{N}(q) \equiv \mathcal{N}\left(q_{[k]}^{\alpha}, \lambda^{2},\left\{x_{k+1}, \ldots, x_{4}\right\}\right) . \quad \mathcal{D}_{i}=\left(q_{[k]}+\sum_{i=0}^{i} p_{j}\right)^{2}+\lambda^{2}+m_{i}^{2}
$$

- Denominators do not depend on "the angular variables" of the Transverse Space $\Omega_{\perp}$
$\square$ Integration over $\Omega_{\perp}$ : Gegenbauer orthogonality condition Spurious integrals vanish automatically!

8 Four-point integrals

$$
I_{4}^{d}[\mathcal{N}]=\int \frac{d^{3} q_{[3]}}{\pi^{d / 2}} \int d^{d-3} \lambda \frac{\mathcal{N}\left(q_{[3]}, \lambda^{2}, x_{4}\right)}{\mathcal{D}_{0} \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}}
$$

$$
x_{4}=\lambda \cos \theta_{1}
$$

$$
I_{4}^{d}[\mathcal{N}]=\frac{1}{\pi^{2} \Gamma\left(\frac{d-4}{2}\right)} \int d^{3} q_{[3]} \int_{0}^{\infty} d \lambda^{2}\left(\lambda^{2}\right)^{\frac{d-5}{2}} \int_{-1}^{1} d \cos \theta_{1}\left(\sin \theta_{1}\right)^{d-6} \frac{\mathcal{N}\left(q_{[3]}, \lambda^{2}, \cos \theta_{1}\right)}{\mathcal{D}_{0} \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}}
$$

Examples

$$
\begin{aligned}
& \cos ^{2} \theta_{1}=\frac{1}{(d-5)^{2}}\left[C_{1}^{\left(\frac{d-5}{2}\right)}\left(\cos \theta_{1}\right)\right]^{2}, \\
& \cos ^{4} \theta_{1}=\frac{1}{(d-3)^{2}}\left[C_{0}^{\left(\frac{d-5}{2}\right)}\left(\cos \theta_{1}\right)+\frac{4}{(d-5)^{2}} C_{2}^{\frac{d-5}{2}}\left(\cos \theta_{1}\right)\right]^{2} \\
& I_{4}^{d}\left[x_{4}^{2}\right]=\frac{1}{d-3} I_{4}^{d}\left[\lambda^{2}\right]=\frac{1}{2} I_{4}^{d+2}[1], \\
& I_{4}^{d}\left[x_{4}^{4}\right]=\frac{3}{(d-3)(d-1)} I_{4}^{d}\left[\lambda^{4}\right]=\frac{3}{4} I_{4}^{d+4}[1] .
\end{aligned}
$$

(] Gegenbauer integration produces powers of $\quad \lambda_{i j}=\boldsymbol{\lambda}_{i} \cdot \boldsymbol{\lambda}_{j}$

8 Three-point integrals

$$
\left\{\begin{array}{l}
x_{3}=\lambda \cos \theta_{1} \\
x_{4}=\lambda \sin \theta_{1} \cos \theta_{2}
\end{array}\right.
$$

$$
I_{3}^{d}[\mathcal{N}]=\frac{1}{\pi^{2} \Gamma\left(\frac{d-4}{2}\right)} \int d^{2} q_{[2]} \int_{0}^{\infty} d \lambda^{2}\left(\lambda^{2}\right)^{\frac{d-4}{2}} \int_{-1}^{1} d \cos \theta_{1}\left(\sin \theta_{1}\right)^{d-5} \times \int_{-1}^{1} d \cos \theta_{2}\left(\sin \theta_{2}\right)^{d-6} \frac{\mathcal{N}\left(q_{[2]}, \lambda^{2},\left\{\cos \theta_{1}, \sin \theta_{1}, \cos \theta_{2}\right\}\right)}{\mathcal{D}_{0} \mathcal{D}_{1} \mathcal{D}_{2}}
$$

Y Two-point integrals

$$
\left\{\begin{array}{l}
x_{2}=\lambda \cos \theta_{1} \\
x_{3}=\lambda \sin \theta_{1} \cos \theta_{2} \\
x_{4}=\lambda \sin \theta_{1} \sin \theta_{2} \cos \theta_{3}
\end{array}\right.
$$

$$
\begin{array}{r}
I_{2}^{d}[\mathcal{N}]=\frac{1}{\pi^{2} \Gamma\left(\frac{d-4}{2}\right)} \int d q_{[1]} \int_{0}^{\infty} d \lambda^{2}\left(\lambda^{2}\right)^{\frac{d-3}{2}} \int_{-1}^{1} d \cos \theta_{1}\left(\sin \theta_{1}\right)^{d-4} \times \int_{-1}^{1} d \cos \theta_{2}\left(\sin \theta_{2}\right)^{d-5} \int_{-1}^{1} d \cos \theta_{3}\left(\sin \theta_{3}\right)^{d-6} \times \\
\frac{\mathcal{N}\left(q_{[1]}, \lambda^{2}, \cos \theta_{1}, \sin \theta_{1}, \cos \theta_{2}, \sin \theta_{2}, \cos \theta_{3}\right)}{\mathcal{D}_{0} \mathcal{D}_{1}}
\end{array}
$$

$\left.I_{2}^{d}[\mathcal{N}]\right|_{p^{2}=0}=\frac{1}{\pi^{2} \Gamma\left(\frac{d-4}{2}\right)} \int d^{2} q_{[2]} \int_{0}^{\infty} d \lambda^{2}\left(\lambda^{2}\right)^{\frac{d-4}{2}} \int_{-1}^{1} d \cos \theta_{1}\left(\sin \theta_{1}\right)^{d-5} \times \int_{-1}^{1} d \cos \theta_{2}\left(\sin \theta_{2}\right)^{d-6} \frac{\mathcal{N}\left(q_{[2]}, \lambda^{2}, \cos \theta_{1}, \sin \theta_{1}, \cos \theta_{2}\right)}{\mathcal{D}_{0} \mathcal{D}_{1}},\left\{\begin{array}{l}x_{3}=\lambda \cos \theta_{1} \\ x_{4}=\lambda \sin \theta_{1} \cos \theta_{2}\end{array}\right.$

One-point integrals

$$
\left\{\begin{array}{l}
x_{1}=\lambda \cos \theta_{1} \\
x_{2}=\lambda \sin \theta_{1} \cos \theta_{2} \\
x_{3}=\lambda \sin \theta_{1} \sin \theta_{2} \cos \theta_{3} \\
x_{4}=\lambda \sin \theta_{1} \sin \theta_{2} \sin \theta_{3} \cos \theta_{4}
\end{array}\right.
$$

$I_{1}^{d}[\mathcal{N}]=\frac{1}{\pi^{2} \Gamma\left(\frac{d-4}{2}\right)} \int_{0}^{\infty} d \lambda^{2}\left(\lambda^{2}\right)^{\frac{d-2}{2}} \int_{-1}^{1} d \cos \theta_{1}\left(\sin \theta_{1}\right)^{d-3} \int_{-1}^{1} d \cos \theta_{1}\left(\sin \theta_{1}\right)^{d-4} \times \int_{-1}^{1} d \cos \theta_{2}\left(\sin \theta_{2}\right)^{d-5} \times \int_{-1}^{1} d \cos \theta_{3}\left(\sin \theta_{3}\right)^{d-6} \times$

## One-Loop Integrand Decomposition $\quad d=d_{/ /}+d_{\perp}$

- Adaptive Unitarity

$$
q^{\alpha}=q_{[k]}^{\alpha}+\lambda^{\alpha}, \quad \mathcal{D}_{i}=\left(q_{[k]}+\sum_{i=0}^{i} p_{j}\right)^{2}+\lambda^{2}+m_{i}^{2}
$$

$$
q_{[k]}^{\alpha}=\sum_{j=1}^{k} x_{j} e_{i}^{\alpha},
$$

reducible
Cutting in different dimensions according to the \# of legs

1-loop :: always MAXIMUM CUTS
New residue parametrization
$\Delta_{i_{0} \cdots i_{4}}=c_{0}$.
$\Delta_{i_{0} \cdots i_{3}}=c_{0}+c_{1} x_{4}+c_{2} x_{4}^{2}+c_{3} x_{4}^{3}+c_{4} x_{4}^{4}$,
$D$
$\Delta_{i_{0} i_{1} i_{2}}=c_{0}+c_{1} x_{3}+c_{2} x_{4}+c_{3} x_{3}^{2}+c_{4} x_{3} x_{4}+c_{5} x_{4}^{2}+c_{6} x_{3}^{3}+c_{7} x_{3}^{2} x_{4}+c_{8} x_{3} x_{4}^{2}+c_{9} x_{4}^{3}$.$\Delta_{i_{0} i_{1}}=c_{0}+c_{1} x_{2}+c_{2} x_{3}+c_{3} x_{4}+c_{4} x_{2} x_{3}+c_{5} x_{2} x_{4}+c_{6} x_{3} x_{4}+c_{7} x_{2}^{2}+c_{8} x_{3}^{2}+c_{9} x_{4}^{2}$.
$\left.\underbrace{m} \Delta_{i_{0} i_{1}}\right|_{p^{2}=0}=c_{0}+c_{1} x_{1}+c_{2} x_{3}+c_{3} x_{4}+c_{4} x_{1} x_{3}+c_{5} x_{1} x_{4}+c_{6} x_{3} x_{4}+c_{7} x_{1}^{2}+c_{8} x_{3}^{2}+c_{9} x_{4}^{2}$.
$\bigcirc \quad \Delta_{i_{0}}=c_{0}+\sum_{i=1}^{4} c_{i} x_{i}$

## One-Loop Integrand Decomposition

## - Adaptive Unitarity

## © Integration of the Residues over Transverse Angles

$\Longrightarrow \int \frac{d^{d} q}{\pi^{d / 2}} \frac{\Delta_{i_{0} i_{1} i_{2} i_{3}}}{\mathcal{D}_{i_{0}} \mathcal{D}_{i_{1}} \mathcal{D}_{i_{2}} \mathcal{D}_{i_{3}}}=c_{0} I_{4}^{d}[1]+\frac{1}{(d-3)} c_{2} I_{4}^{d}\left[\lambda^{2}\right]+\frac{3}{(d-3)(d-1)} c_{4} I_{4}^{d}\left[\lambda^{4}\right]=c_{0} I_{4}^{d}[1]+\frac{1}{2} c_{2} I_{4}^{d+2}[1]+\frac{3}{4} c_{4} I_{4}^{d+4}[1]$.
$>$

$$
\begin{aligned}
& \int \frac{d^{d} q}{\pi^{d / 2}} \frac{\Delta_{i_{0} i_{1} i_{2}}}{\mathcal{D}_{i_{0}} \mathcal{D}_{i_{1}} \mathcal{D}_{i_{2}}}=c_{0} I_{3}^{d}[1]+\frac{1}{(d-3)}\left(c_{3}+c_{5}\right) I_{3}^{d}\left[\lambda^{2}\right]=c_{0} I_{3}^{d}[1]+\frac{1}{2}\left(c_{3}+c_{5}\right) I_{3}^{d+2}[1] . \\
& \int \frac{d^{d} q}{\pi^{d / 2}} \frac{\Delta_{i_{0} i_{1}}}{\mathcal{D}_{i_{0}} \mathcal{D}_{i_{1}}}=c_{0} I_{2}^{d}[1]+\frac{1}{(d-3)}\left(c_{7}+c_{8}+c_{9}\right) I_{2}^{d}\left[\lambda^{2}\right]=c_{0} I_{2}^{d}[1]+\frac{1}{2}\left(c_{7}+c_{8}+c_{9}\right) I_{2}^{d+2}[1] .
\end{aligned}
$$

$\left.\left.m \bigcirc m \int \frac{d^{d} q}{\pi^{d / 2}} \frac{\Delta_{i_{0} i_{1}}}{\mathcal{D}_{i_{0}}}\right|_{i_{1}}\right|_{p^{2}=0}=c_{0} I_{2}^{d}[1]+c_{1} I_{2}^{d}\left[x_{1}\right]+c_{7} I_{2}^{d}\left[x_{1}^{2}\right]+\frac{1}{(d-3)}\left(c_{8}+c_{9}\right) I_{3}^{d}\left[\lambda^{2}\right]=c_{0} I_{2}^{d}[1]+c_{1} I_{2}^{d}\left[x_{1}\right]+c_{7} I_{2}^{d}\left[x_{1}^{2}\right]+\frac{1}{2}\left(c_{8}+c_{9}\right) I_{2}^{d+2}[1]$.

$$
\int \frac{d^{d} q}{\pi^{d / 2}} \frac{\Delta_{i_{0}}}{\mathcal{D}_{i_{0}}}=c_{0} I_{1}^{d}[1]
$$



## Divide et Impera

Philip II of Macedon

Divide et Integra...
...et Divide

## Divide-et-Integra-et-Divide

Additional Polynomial Division
reducible

|  | divide | integra | divide |
| :---: | :---: | :---: | :---: |
| Topology | $\Delta_{i_{0} \cdots i_{n}}$ | $\Delta_{i_{0} \cdots i_{n}}^{\text {int }}$ | $\Delta_{i_{0} \cdots i_{n}}^{\prime}$ |
| $\mathcal{I}_{01234}$ | $\begin{gathered} 1 \\ \{1\} \end{gathered}$ |  | $\begin{aligned} & - \\ & - \end{aligned}$ |
| $\mathcal{I}_{0123} \quad \square$ | $\begin{gathered} 5 \\ \left\{1, x_{4}, x_{4}^{2}, x_{4}^{3}, x_{4}^{4}\right\} \end{gathered}$ | $\begin{gathered} 3 \\ \left\{1, \lambda^{2}, \lambda^{4}\right\} \end{gathered}$ | $\begin{gathered} 1 \\ \{1\} \end{gathered}$ |
| $\mathcal{I}_{012}$ | $\begin{gathered} 10 \\ \left\{1, x_{3}, x_{4}, x_{3}^{2}, x_{3} x_{4}, x_{4}^{2}, x_{3}^{3}, x_{3}^{2} x_{4}, x_{3} x_{4}^{2}, x_{4}^{3}\right\} \end{gathered}$ | $\begin{gathered} 2 \\ \left\{1, \lambda^{2}\right\} \end{gathered}$ | $\begin{gathered} 1 \\ \{1\} \end{gathered}$ |
| $\mathcal{I}_{02} \quad \bigcirc$ | $\begin{gathered} 10 \\ \left\{1, x_{2}, x_{3}, x_{4}, x_{2}^{2}, x_{2} x_{3}, x_{2} x_{4}, x_{3}^{2}, x_{3} x_{4}, x_{4}^{2}\right\} \end{gathered}$ | $\begin{gathered} 2 \\ \left\{1, \lambda^{2}\right\} \end{gathered}$ | $\begin{gathered} 1 \\ \{1\} \end{gathered}$ |
| $\mathcal{I}_{01} m \backsim$ | $\begin{gathered} 10 \\ \left\{1, x_{1}, x_{3}, x_{4}, x_{1}^{2}, x_{1} x_{3}, x_{1} x_{4}, x_{3}^{2}, x_{3} x_{4}, x_{4}^{2}\right\} \end{gathered}$ | $\begin{gathered} 4 \\ \left\{1, x_{1}, x_{1}^{2}, \lambda^{2}\right\} \end{gathered}$ | $\begin{gathered} 3 \\ \left\{1, x_{1}, x_{1}^{2}\right\} \end{gathered}$ |
| $\mathcal{I}_{0}$ | $\begin{gathered} 5 \\ \left\{1, x_{1}, x_{2}, x_{3}, x_{4}\right\} \end{gathered}$ | $\begin{gathered} 1 \\ \{1\} \end{gathered}$ | - |

(V) minimal number of irreducible non-spurious monomials (irr. scal. prod.s)!
(घ Second polynomial division $\Leftrightarrow=>$ Dimensional Recurrence @ integrand level

## Two-Loop Integrals $d=4-2 \epsilon$

$$
I_{n}^{d}[\mathcal{N}]=\int \frac{d^{d} q_{1} d^{d} q_{2}}{\pi^{d}} \frac{\mathcal{N}\left(q_{1}, q_{2}\right)}{\prod_{i} \mathcal{D}_{i}}, \quad q_{1}^{\alpha}=q_{1[4]}^{\alpha}+\mu_{1}^{\alpha}, \quad q_{2}^{\alpha}=q_{2[4]}^{\alpha}+\mu_{2}^{\alpha}, \quad \mu_{i} \cdot \mu_{j}=\mu_{i j}, \quad q_{i} \cdot q_{j}=q_{i[4]} \cdot q_{j[4]}+\mu_{i j},
$$

\%loop momentum parametrization

$$
q_{1[4]}^{\alpha}=\sum_{i=1}^{4} x_{i} e_{i}^{\alpha}, \quad q_{2[4]}^{\alpha}=\sum_{i=1}^{4} y_{i} f_{i}^{\alpha},
$$

$$
I_{n}^{d}[\mathcal{N}]=\frac{2^{d-6} \mathcal{K}_{1} \mathcal{K}_{2}}{\pi^{5} \Gamma(d-5)} \int \prod_{i=1}^{4} d x_{i} d y_{i} \int_{0}^{\infty} d \mu_{11} \int_{0}^{\infty} d \mu_{22} \int_{-\sqrt{\mu_{11} \mu_{22}}}^{\sqrt{\mu_{11} \mu_{22}}} d \mu_{12}\left(\mu_{11} \mu_{22}-\mu_{12}^{2}\right)^{\frac{d-6}{2}} \times \frac{\mathcal{N}\left(x_{j}, y_{i}, \mu_{i j}\right)}{\prod_{i} \mathcal{D}_{i}}
$$

## Two-Loop Integrals

 $d=d_{/ /}+d_{\perp}$©loop momentum parametrization

$$
q_{1}^{\alpha}=q_{1[k]}^{\alpha}+\lambda_{1}^{\alpha}, \quad q_{2}^{\alpha}=q_{2[k]}^{\alpha}+\lambda_{2}^{\alpha}, \quad k \leq 3
$$

$$
\begin{array}{cl}
q_{1[k]}^{\alpha}=\sum_{j=1}^{k} x_{j} e_{j}^{\alpha}, \quad q_{2[k]}^{\alpha}=\sum_{j=1}^{k} y_{j} e_{j}^{\alpha}, & k \text {-dimensional space spanned by the external kinematics } \\
\lambda_{1}^{\alpha}=\sum_{j=k+1}^{4} x_{j} e_{j}^{\alpha}+\mu_{1}^{\alpha}, \quad \lambda_{2}^{\alpha}=\sum_{j=k+1}^{4} y_{j} e_{j}^{\alpha}+\mu_{2}^{\alpha} \quad(d-k) \text {-dimensional orthogonal subspaces, }
\end{array}
$$

$$
\left\{\begin{array} { r l } 
{ x _ { k + 1 } = } & { \sqrt { \lambda _ { 1 1 } } \operatorname { c o s } \theta _ { 1 1 } } \\
{ } & { \cdots } \\
{ x _ { 4 } = } & { \sqrt { \lambda _ { 1 1 } } \operatorname { c o s } \theta _ { 4 - k } \prod _ { i = 1 } ^ { 4 - k } \operatorname { s i n } \theta _ { i 1 } }
\end{array} \quad \left\{\begin{array}{rl}
y_{k+1}= & \sqrt{\lambda_{22}}\left(\cos \theta_{12} \cos \theta_{11}+\cos \theta_{22} \sin \theta_{11} \sin \theta_{12}\right) \\
& \cdots \\
y_{4}=\quad & \sqrt{\lambda_{22}}\left[\cos \theta_{12} \cos \theta_{4-k} \prod_{j=1}^{4-k-1} \sin \theta_{j 1}+\cos \theta_{5-k 2} \sin \theta_{4-k 1} \prod_{j=1}^{4-k} \sin \theta_{j 2}\right. \\
& \left.-\cos \theta_{4-k 1} \sum_{l=2}^{4-k} \cos \theta_{l 2} \cos \theta_{l-11} \prod_{j=1}^{l-1} \sin \theta_{j 2}\left(\delta_{4-k l}+\left(1-\delta_{k-4 l}\right) \prod_{m=1}^{4-k-l} \sin \theta_{l+m-11}\right)\right]
\end{array}\right.\right.
$$

$$
\cos \theta_{12}=\frac{\lambda_{12}}{\sqrt{\lambda_{11} \lambda_{22}}}
$$

$$
\begin{aligned}
I_{n}^{d}[\mathcal{N}]= & \frac{2^{d-6}}{\pi^{5} \Gamma(n-k-1)} \int d^{k} q_{1[k]} d^{k} q_{2[k]} \int_{0}^{\infty} d \lambda_{11}\left(\lambda_{11}\right)^{\frac{d-k-2}{2}} \int_{0}^{\infty} d \lambda_{22}\left(\lambda_{22}\right)^{\frac{d-k-2}{2}} \times \\
& \int_{-1}^{1} d \cos \theta_{12}\left(\sin \theta_{12}\right)^{d-k-3} \int_{-1}^{1} \prod_{i=1}^{4-k} d \cos \theta_{i 1} d \cos \theta_{i+12}\left(\sin \theta_{i 1}\right)^{d-k-i-2}\left(\sin \theta_{i+12}\right)^{d-k-i-3} \times \frac{\mathcal{N}\left(q_{1}, q_{2}\right)}{\prod_{i} \mathcal{D}_{i}}
\end{aligned}
$$

- Denominators do not depend on "the angular variables" of the Transverse Space $\Omega_{\perp}$

V Numerators depend on "all" loop variables
$\square$ Integration over $\Omega_{\perp}$ : Gegenbauer orthogonality condition Spurious integrals vanish automatically @ all-loop!

## Two-Loop Integrand Decomposition

Divide-et-Integra-et-Divide

## - $\overline{=}===\lambda_{i j}$

reducible

(V) Arbitrary (external and internal) kinematics!

## The Geometry of Cut-Residues

- l-Loop Recurrence Relation



## Towards 2-loop Automation

- Application of the Integration over Transverse Angles

V Simplifying the integrands to be reduced
Removing the transverse direction ==> less coefficients to be determined
Generalising and extending to all-loop the R2-integration

## Towards 2-loop Automation

- Application of the Integration over Transverse Angles

I Simplifying the integrands to be reduced
Removing the transverse direction ==> less coefficients to be determined
G Generalising and extending to all-loop the R2-integration

- Integrand Reduction + IBP-id's

Improved IBP Solver Reduze; Fire;...
Algebraic Geometry Methods
Kosower Gluza Kaida; Ita; Larsen Zhang;
>> Zhang


- Tree level



Known!

- One Loop




Known!

?Unknown?

## Differential Equations for Master Integrals



## Quantum Mechanics

©Schroedinger Eq'n ( $\varepsilon$-linear Hamiltonian)

$$
i \hbar \partial_{t}|\Psi(t)\rangle=H(\epsilon, t)|\Psi(t)\rangle, \quad H(\epsilon, t)=H_{0}(t)+\epsilon H_{1}(t)
$$

$\%$ Interaction Picture

$$
H_{i, I}(t)=B^{\dagger}(t) H_{i}(t) B(t)
$$

Matrix Transform

$$
i \hbar \partial_{t} B(t)=H_{0}(t) B(t) \quad B(t)=e^{-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau H_{0}(\tau)}
$$

©Schroedinger Eq'n (canonical form)

$$
i \hbar \partial_{t}\left|\Psi_{I}(t)\right\rangle=\epsilon H_{1, I}(t)\left|\Psi_{I}(t)\right\rangle
$$

## Magnus Expansion

## System of 1st ODE

$$
\partial_{x} Y(x)=A(x) Y(x), \quad Y\left(x_{0}\right)=Y_{0} . \quad A(x) \text { non-commutative }
$$

## solution: Matrix Exponential

$$
Y(x)=e^{\Omega\left(x, x_{0}\right)} Y\left(x_{0}\right) \equiv e^{\Omega(x)} Y_{0}, \quad \quad \Omega(x)=\sum_{n=1}^{\infty} \Omega_{n}(x)
$$

$$
\begin{aligned}
& \Omega(x)=\sum_{n=1}^{\infty} \Omega_{n}(x) . \\
& \Omega_{1}(x)=\int_{x_{0}}^{x} d \tau_{1} A\left(\tau_{1}\right), \\
& \Omega_{2}(x)=\frac{1}{2} \int_{x_{0}}^{x} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2}\left[A\left(\tau_{1}\right), A\left(\tau_{2}\right)\right], \\
& \Omega_{3}(x)=\frac{1}{6} \int_{x_{0}}^{t} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2} \int_{x_{0}}^{\tau_{2}} d \tau_{3}\left[A\left(\tau_{1}\right),\left[A\left(\tau_{2}\right), A\left(\tau_{3}\right)\right]\right]+\left[A\left(\tau_{3}\right),\left[A\left(\tau_{2}\right), A\left(\tau_{1}\right)\right]\right] .
\end{aligned}
$$

## © Iterated Integrals

$$
\mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\gamma]} \equiv \int_{\gamma} d \log \eta_{i_{1}} \ldots d \log \eta_{i_{k}} \equiv \int_{0 \leq t_{1} \leq \ldots \leq t_{k} \leq 1} g_{i_{k}}^{\gamma}\left(t_{k}\right) \ldots g_{i_{1}}^{\gamma}\left(t_{1}\right) d t_{1} \ldots d t_{k} \quad g_{i}^{\gamma}(t)=\frac{d}{d t} \log \eta_{i}(\gamma(t))
$$

$$
\mathcal{C}_{\vec{m}}^{[\gamma]} \mathcal{C}_{\vec{n}}^{[\gamma]}=\mathcal{C}_{\vec{m}}^{[\gamma]} \amalg \mathcal{C}_{\vec{n}}^{[\gamma]}=\sum_{\vec{p}=\vec{m} \sqcup \vec{n}} \mathcal{C}_{\vec{p}}^{[\gamma]} \quad \mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\alpha \beta]}=\sum_{p=0}^{k} \mathcal{C}_{i_{k}, \ldots, i_{p+1}}^{[\alpha]} \mathcal{C}_{i_{p}, \ldots, i_{1}}^{[\beta]}
$$

- Quantum Mechanics

Time-evolution in Perturbation Theory
Eperturbation parameter: $\varepsilon$
Linear Hamiltonian in $\varepsilon$
8 Unitary transform
©Schroedinger Equation
in the interaction picture ( $\varepsilon$-factorization)
©solution: Dyson series


- Feynman Integrals

Kinematic-evolution in Dimensional Regularization
\$space-time dimensional parameter: $\varepsilon=(4-\mathrm{d}) / 2$
$\notin$ Linear system in $\varepsilon$
\& non-Unitary Magnus transform
System of Differential Equations
in canonical form ( $\varepsilon$-factorization) Henn (2013)
$\otimes_{\text {solution: Dyson/Magnus series }}$
$=e^{\Omega(d, x)}$
\$Feynman integrals can be determined from differential equations that looks like gauge transformations

## Drell-Yan @ 2loop EW-QCD

$$
\begin{aligned}
& q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow l^{-}\left(p_{3}\right)+l^{+}\left(p_{4}\right), \\
& q\left(p_{1}\right)+\bar{q}^{\prime}\left(p_{2}\right) \rightarrow l^{-}\left(p_{3}\right)+\bar{\nu}\left(p_{4}\right) . \\
& p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=0 .
\end{aligned}
$$



$$
\frac{1}{p^{2}+m_{Z}^{2}}=\frac{1}{p^{2}+m_{W}^{2}+\Delta m^{2}} \approx \frac{1}{p^{2}+m_{W}^{2}}+\frac{\Delta m^{2}}{\left(p^{2}+m_{W}^{2}\right)^{2}}+\ldots
$$

$$
\text { expansion is } \xi=\Delta m^{2} / m_{W}^{2}
$$

no-mass

known

1-mass


new

2-mass

new

System of 1st ODE

$$
d \mathcal{I}=\epsilon d \hat{A} \mathcal{I} \quad \text { with } \quad d \hat{A}=\hat{A}_{x} d x+\hat{A}_{y} d y, \quad d A=\sum_{i=1}^{n} M_{i} d \log \eta_{i}
$$

- 1-Mass



## Q 31 MIs

\&alphabet: 6 rational letters
solution: GPL's

- 2-Mass



## © 36 MIs

Qalphabet: 12 rational +5 irrational letters
© solution: Iterated integrals
:: semi-analytic results for $\bigcirc$ :: numerical boundary conditions

## Summary and Outlook

- IntegrANDS

Multi-Loop Integrand Reduction
\&Complete Development :: for generic kinematics
Exploiting DimReg :: Adaptive Unitarity and Transverse space integration
$\notin$ any loop :: we are at the same point as OPP for 1-loop.
Applying symmetries to the coefficients w/in the integrand decomposition
\& FDF: simple implementation of FDH scheme for generalised unitarity cuts
Fazio, Mirabella, Torres, PM (2014)
\& BCJ relations @ tree-level in DimReg w/in FDF Primo, Schubert, Torres, PM (2015)
\& BCJ relations @ 1-Loop
Chester (2016)
Primo, Torres (2016)

- IntegrALS

Y Multi-Loop Master Integrals evaluation
Differential Equations (analytic as well as numerical) :: Magnus Exponential
\& exploiting Path invariance
MI's in different dimensions $==>$ Adaptive Differential Equations?
© Numerical methods also very promising

## Simplicity is the dawn of Discoveries

8. Factorization
©Find a region in the parameter space where the answer look simple

Evolution algorithms :: Unitarity :: Recurrence Relation, Differential Equations, Exponentials \& to go from simple to complex configuration

## Simplicity is the dawn of Discoveries

Factorization
Find a region in the parameter space where the answer look simple

Yvolution algorithms :: Unitarity :: Recurrence Relation, Differential Equations, Exponentials \&to go from simple to complex configuration
\% A(nother) beautiful, simple, innocent equation
momentum $k$. If we set this phase to zero, it is easy to show that that the change in the polarization vector caused by a change in the reference momentum is given by:

$$
\begin{equation*}
\epsilon_{\mu}^{+}(p, k) \rightarrow \epsilon_{\mu}^{+}\left(p, k^{\prime}\right)-\sqrt{2} \frac{\left\langle k k^{\prime}\right\rangle}{\langle k p\rangle\left\langle k^{\prime} p\right\rangle} p_{\mu} . \tag{2.23}
\end{equation*}
$$

- Transversality \& on-shellness

I Gauge invariance/Ward Id'y
( holomorphic) Soft Factors

- Little Group transform
- Momentum twistors
- Color/Kinematics duality

