MHV Amplitudes from 0 to 5 Loops (in planar $\mathrm{N}=4$ super-Yang-Mills)

Lance Dixon (SLAC)
with J. Drummond, C. Duhr, M. von Hippel, J. Pennington
1308.2276, 1402.3300
with S. Caron-Huot, M. von Hippel, A. McLeod,
1509.08127 and to appear

MHV@30: Fermilab, March 16, 2016

The Unreasonable Simplicity of QCD Amplitudes...

Parke, Taylor (1986); Mangano, Parke, Xu (1987)

...is due to QCD's embedding into $\mathrm{N}=4$ super-Yang-Mills theory

Grisaru, Pendleton, van Nieuwenhuizen (1976);
Grisaru, Pendleton (1977)

Parke, Taylor (1985); Kunszt (1986); Nair (1988)
($\mathrm{N}=4$) SUSY Ward Identities: Hold at tree-level in QCD because for n-gluon tree amplitudes matter doesn't matter

$\mathrm{N}=4 \mathrm{SYM} \neq \mathrm{QCD}$ at loop level

- Conformally invariant ($\beta=0$)
- Uniform transcendental weight: " $\ln ^{2 L} x$ " at L loops
- Nevertheless, N=4 SYM a testing ground for methods for pQCD at colliders since 1990s:
- All massless particles
- IR structure perturbatively similar (dominated by gluons)
- Factorization similar: collinear, multi-particle, Regge/BFKL limits

Planar (large N_{c}) $\mathrm{N}=4 \mathrm{SYM}$ less like QCD

- Amplitudes equivalent to Wilson loops
- Dual (super)conformal invariance for any n
- Amplitudes for $n=4$ or 5 gluons "trivial" to all loop orders
- Strong coupling \rightarrow minimal area surfaces
- Perturbation theory has finite radius of convergence (no renormalons, no instantons)
- Integrability + OPE \rightarrow exact, nonperturbative predictions for near-collinear limit

MHV (6-point) timeline

QCD

N=4 SYM
Planar N=4 SYM

Recent progress from 3 to 5 loops: bootstrap integrated loop amplitudes directly, without ever peeking inside the loops

Ideally, do this nonperturbatively (so no loops to peek inside) for general kinematics

The Strategy

1. Make ansatz for 6 gluon scattering amplitudes as linear combination of "hexagon functions"
2. Use dual superconformal ($\overline{\mathrm{Q}}$ or descent) equations to prune ansatz globally in the kinematics
3. Use "boundary value data" (multi-Regge, OPE limits) to fix constants in ansatz. Constraints all linear \rightarrow just solve linear equations for rational numbers in ansatz
4. Cross check.

- Works for 6-gluon amplitude, first "nontrivial" amplitude in planar N=4 SYM, through 5 loops for MHV = (--+++++) [also 4 loops for NMHV = (---+++) 1509.08127]

BDS Ansatz

- Captures all IR divergences of amplitude
- Also accounts for an anomaly in dual conformal invariance due to IR divergence
- Fails for $n=6,7, \ldots$
- But failure (remainder function) is dual conformally invariant

$$
\mathcal{A}_{n}^{\mathrm{BDS}}=\mathcal{A}_{n}^{\text {tree }} \times \exp \left[\sum_{l=1}^{\infty}\left[\frac{\lambda}{8 \pi^{2}}\right]^{l}\left(f^{(l)}(\epsilon) M_{n}^{(1)}\left(l \epsilon ; s_{i j}\right)+C^{(l)}+\mathcal{O}(\epsilon)\right)\right]
$$

constants, indep. of kinematics
all kinematic dependence from 1-loop amplitude

Dual conformal invariance

Broadhurst (1993); Lipatov (1999); Drummond, Henn, Smirnov, Sokatchev, hep-th/0607160
Conformal symmetry acting in momentum space, on dual or sector variables x_{i} First seen in $\mathrm{N}=4$ SYM planar amplitudes in the loop integrals

Dual conformal invariance (cont.)

- Amplitude fixed, up to functions of dual conformally invariant cross ratios:

$$
u_{i j k l} \equiv \frac{x_{i j}^{2} x_{k l}^{2}}{x_{i k}^{2} x_{j l}^{2}}
$$

$$
x_{i j}^{2}=\left(k_{i}+k_{i+1}+\cdots+k_{j-1}\right)^{2}
$$

- $x_{i, i+1}^{2}=k_{i}^{2}=0 \quad \rightarrow$ no such variables for $n=4,5$
$n=6 \rightarrow$ precisely 3 ratios:

$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12} s_{45}}{s_{123} s_{345}} \quad+2 \text { cyclic perm's }
$$

From 9 variables to just 3 :

```
\(s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{61}, s_{123}, s_{234}, s_{345}\)
```

$\rightarrow u_{1}, u_{2}, u_{3}$

Remainder function, starts at 2 loops

$$
\mathcal{A}_{6}^{\text {MHV }}\left(\epsilon ; s_{i j}\right)=\mathcal{A}_{6}^{\mathrm{BDS}}\left(\epsilon ; s_{i j}\right) \exp \left[R_{6}\left(u_{1}, u_{2}, u_{3}\right)\right]
$$

A better quantity

$$
\mathcal{E}(u, v, w)=\exp \left[R_{6}-\frac{\gamma_{K}(a)}{8} Y\right] \equiv \frac{\mathcal{A}_{6}^{\mathrm{MHV}}}{\mathcal{A}_{6}^{\mathrm{BDS}-\text { like }}}
$$

where $\quad a=\frac{\lambda}{8 \pi^{2}} \quad \gamma_{K}(a)=4 f_{0}(a) \quad$ cusp anomalous dimension

$$
Y(u, v, w) \equiv \operatorname{Li}_{2}(1-u)+\mathrm{Li}_{2}(1-v)+\mathrm{Li}_{2}(1-w)+\frac{1}{2}\left(\ln ^{2} u+\ln ^{2} v+\ln ^{2} w\right)
$$

$$
\frac{\mathcal{A}_{6}^{\mathrm{BDS}-\text { like }}}{\mathcal{A}_{6}^{\mathrm{MHV}(0)}}=\exp \left[\sum_{L=1}^{\infty} a^{L}\left(f^{(L)}(\epsilon) \frac{1}{2} \hat{M}_{6}(L \epsilon)+C^{(L)}\right)\right]
$$

$$
\hat{M}_{6}(\epsilon)=M_{6}^{1-\text { loop }}+Y(u, v, w)
$$

MHV Amplitudes = Wilson Loops

Motivated by strong-coupling correspondence
Alday, Maldacena, 0705.0303

- One loop, n=4 Drummond, Korchemsky, Sokatchev, 0707.0243
- One loop, any n

Brandhuber, Heslop, Travaglini, 0707.1153

- Two loops, $n=4,5,6$

Drummond, Henn, Korchemsky, Sokatchev, 0709.2368, 0712.1223, 0803.1466; Bern, LD, Kosower, Roiban, Spradlin, Vergu, Volovich, 0803.1465

- Wilson-loop VEV always matches [MHV] scattering amplitude!
- Justifies dual conformal invariance for amplitude DHKS, 0712.1223
- Twistor action \rightarrow duality: e.g. Adamo, Bullimore, Mason, Skinner, 1104.2890

Two loop answer: $\boldsymbol{R}_{6}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)$

- Simplified to classical polylogarithms by

Goncharov, Spradlin, Vergu, Volovich, 1006.5703

$$
\begin{aligned}
& R_{6}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right) \\
& -\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{1}{24} J^{4}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
\end{aligned}
$$

$$
\begin{aligned}
L_{4}\left(x^{+}, x^{-}\right) & =\frac{1}{8!!} \log \left(x^{+} x^{-}\right)^{4}+\sum_{m=0}^{3} \frac{(-1)^{m}}{(2 m)!!} \log \left(x^{+} x^{-}\right)^{m}\left(\ell_{4-m}\left(x^{+}\right)+\ell_{4-m}\left(x^{-}\right)\right) \\
\ell_{n}(x) & =\frac{1}{2}\left(\operatorname{Li}_{n}(x)-(-1)^{n} \operatorname{Li}_{n}(1 / x)\right) \quad J=\sum_{i=1}^{3}\left(\ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)
\end{aligned}
$$

$x_{i}^{ \pm}=u_{i} x^{ \pm}, \quad x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}} \quad \Delta=\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3}$

Kinematical playground

Multi-Regge limit

- Minkowski kinematics, large rapidity separations between the 4 final-state gluons:

- Properties of planar $\mathrm{N}=4 \mathrm{SYM}$ amplitude in this limit studied extensively at weak coupling:
Bartels, Lipatov, Sabio Vera, 0802.2065, 0807.0894; Lipatov, 1008.1015; Lipatov,
Prygarin, 1008.1016, 1011.2673; Bartels, Lipatov, Prygarin, 1012.3178, 1104.4709;
LD, Drummond, Henn, 1108.4461; Fadin, Lipatov, 1111.0782;
LD, Duhr, Pennington, 1207.0186; Basso, Caron-Huot, Sever, 1407.3766

$2 \rightarrow 4$ Multi-Regge picture

Bartels, Lipatov, Sabio Vera, 0802.2065

$2 \rightarrow 4$ multi-Regge limit

- Euclidean MRK limit vanishes
- To get nonzero result for physical region, first let $u_{1} \rightarrow u_{1} e^{-2 \pi i}$, then $u_{1} \rightarrow 1, u_{2}, u_{3} \rightarrow 0$

$$
\frac{u_{2}}{1-u_{1}} \rightarrow \frac{1}{|1-z|^{2}} \quad \frac{u_{3}}{1-u_{1}} \rightarrow \frac{|z|^{2}}{|1-z|^{2}}
$$

$$
R_{6}^{(L)} \rightarrow(2 \pi i) \sum_{r=0}^{L-1} \ln ^{r}(1-u)\left[g_{r}^{(L)}(z, \bar{z})+2 \pi i h_{r}^{(L)}(z, \bar{z})\right]
$$

$g_{r}^{(L)}$ and $h_{r}^{(L)}$
all well understood by now

Fadin, Lipatov, 1111.0782;
LD, Duhr, Pennington, 1207.0186;
Pennington, 1209.5357; Basso,
Caron-Huot, Sever, 1407.3766;

OPE Limits

Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788; GMSV, 1010.5009; 1102.0062 Basso, Sever, Vieira [BSV], 1303.1396; 1306.2058; 1402.3307, 1407.1736;
Basso, Caetano, Córdova, Sever, Vieira, 1412.1132;
Belitsky, 1407.2853, 1410.2534, 1506.02598;
Drummond, Papathanasiou, 1507.08982;...

- $\boldsymbol{R}_{\mathbf{6}}{ }^{(L)}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ vanishes as $v=1 / \cosh ^{2} \tau \rightarrow 0 \quad \tau \rightarrow \infty$

Near-collinear limit (power-suppressed terms in v) described by OPE with generic form

$$
R_{6}^{(L)}(u, v, w)=R_{6}^{(L)}(\tau, \sigma, \phi) \sim \int d n C_{n}(g) \exp \left[-E_{n}(g) \tau\right]
$$

$$
\begin{aligned}
u & =\frac{e^{\sigma} \sinh \tau \tanh \tau}{2(\cosh \sigma \cosh \tau+\cos \phi)} \\
v & =\frac{1}{\cosh ^{2} \tau} \\
w & =u e^{-2 \sigma}
\end{aligned}
$$

L. Dixon

MHV from 0 to 5 loops

Fermilab

OPE Limits (cont.)

- OPE dominated by low-lying excitations of a flux tube
- BSV use power of integrability to determine pentagon transitions EXACTLY in the coupling.
- From this one can easily compute at ANY loop order the leading-twist one flux-tube excitation terms $\left(T=\mathrm{e}^{-\tau}\right)$:

$$
T \mathrm{e}^{ \pm i \phi}[\ln T]^{k} f_{k}(\sigma), \quad k=0,1,2, \ldots, L-1
$$

the sub-leading twist, two flux-tube excitation terms

$$
T^{2}\left\{\mathrm{e}^{ \pm 2 i \phi}, 1\right\}[\ln T]^{k} f_{k}(\sigma), \quad k=0,1,2, \ldots, L-1 \quad \text { etc. }
$$

Basic MHV bootstrap assumption

$\boldsymbol{R}_{\mathbf{6}}{ }^{(L)}(u, v, w), \quad$ or better, $\quad \mathcal{E}^{(L)}(u, v, w)$
is a linear combination of weight $2 L$
hexagon functions at any loop order L

Functional interlude

Chen; Goncharov; Brown; ...

- Multiple polylogarithms, or n-fold iterated integrals, or weight n pure transcendental functions f.
- Define by derivatives:

$$
d f=\sum_{s_{k} \in \mathcal{S}} f^{s_{k}} d \ln s_{k}
$$

$S=$ finite set of rational expressions, "symbol letters", and

$$
f^{s_{k}} \equiv\{n-1,1\} \text { coproduct component }
$$

Duhr, Gangl, Rhodes,
are also pure functions, weight $n-1$

- Iterate: $d f^{s_{k}} \Rightarrow f^{s_{j}, s_{k}} \equiv\{n-2,1,1\}$ component
- Symbol $=\{1,1, \ldots, 1\}$ component (maximally iterated)
L. Dixon

Harmonic Polylogarithms of one variable (HPLs \{0,1\})

Remiddi, Vermaseren, hep-ph/9905237

- Subsector of hexagon functions.
- Generalize classical polylogs, $\mathrm{Li}_{n}(u)=\int_{0}^{u} \frac{d t}{t} \mathrm{Li}_{n-1}(t)$
- Define by iterated integration:

$$
H_{0, \vec{w}}(u)=\int_{0}^{u} \frac{d t}{t} H_{\vec{w}}(t), \quad H_{1, \vec{w}}(u)=\int_{0}^{u} \frac{d t}{1-t} H_{\vec{w}}(t)
$$

- Or by derivatives

$$
d H_{0, \vec{w}}(u)=H_{\vec{w}}(u) d \ln u \quad d H_{1, \vec{w}}(u)=-H_{\vec{w}}(u) d \ln (1-u)
$$

- Symbol letters: $\quad \mathcal{S}=\{u, 1-u\}$

Hexagon function symbol letters

- Momentum twistors $Z_{i}^{A}, i=1,2, \ldots, 6$ transform simply under dual conformal transformations. Hodges, 0905.1473
- Construct 4-brackets $\varepsilon_{A B C D} Z_{i}^{A} Z_{j}^{B} Z_{k}^{C} Z_{l}^{D} \equiv\langle i j k l\rangle$
- 15 projectively invariant combinations of 4-brackets can be factored into 9 basic ones:

$$
\mathcal{S}=\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}
$$

$u=\frac{\langle 6123\rangle\langle 3456\rangle}{\langle 6134\rangle\langle 2356\rangle} \quad 1-u=\frac{\langle 6135\rangle\langle 2346\rangle}{\langle 6134\rangle\langle 2356\rangle}$
$y_{u}=\frac{\langle 1345\rangle\langle 2456\rangle\langle 1236\rangle}{\langle 1235\rangle\langle 3456\rangle\langle 1246\rangle} \quad+$ cyclic

Hexagon function symbol letters (cont.)

- y_{i} not independent of u_{i} :

$$
y_{u} \equiv \frac{u-z_{+}}{u-z_{-}}, \ldots \text { where }
$$

$$
\begin{aligned}
z_{ \pm} & =\frac{1}{2}[-1+u+v+w \pm \sqrt{\Delta}] \\
\Delta & =(1-u-v-w)^{2}-4 u v w
\end{aligned}
$$

- Function space graded by parity:

$$
\begin{array}{rll|}
i \sqrt{\triangle} & \leftrightarrow & -i \sqrt{\triangle} \\
z_{+} & \leftrightarrow & z_{-} \\
y_{i} & \leftrightarrow 1 / y_{i} \\
u_{i} & \leftrightarrow & u_{i}
\end{array}
$$

Branch cut condition

- All massless particles \rightarrow all branch cuts start at origin in

$$
s_{i, i+1}, \quad s_{i, i+1, i+2}
$$

\rightarrow Branch cuts all start from 0 or ∞ in

$$
u=\frac{s_{12}^{2} s_{45}^{2}}{s_{123}^{2} s_{345}^{2}} \quad \text { or } v \text { or } w
$$

\rightarrow First symbol entry $\in\{u, v, w\} \quad$ GMSV, 1102.0062

- Powerful constraint: At weight 8 (four loops) we would have roughly $1,675,553$ functions without it; exactly 6,916 with it.

Constructing hexagon functions iteratively

$\{n-1,1\}$ coproduct characterizes first derivatives
$\left.\frac{\partial F}{\partial u}\right|_{v, w}=\frac{F^{u}}{u}-\frac{F^{1-u}}{1-u}+\frac{1-u-v-w}{u \sqrt{\Delta}} F^{y_{u}}+\frac{1-u-v+w}{(1-u) \sqrt{\Delta}} F^{y_{0}}+\frac{1-u+v-w}{(1-u) \sqrt{\Delta}} F^{y_{w}}$

$$
\frac{\partial \ln y_{u} \uparrow}{\partial u}
$$

- Defines F up to overall constant (subject to integrability)
- Always stay in space of functions with good branch cuts
- Integrate numerically or via multiple polylogarithms $G(\ldots)$
- Or solve analytically in special limits, e.g.:

1. Multi-regge limit
2. Near-collinear (OPE) limit

The first true hexagon function

$$
\Rightarrow \tilde{\Phi}_{6}(u, v, w)
$$

- Weight 3 , totally symmetric in $\{u, v, w\}$ (secretly Li_{3} 's)
- First parity odd function, so:

$$
\tilde{\Phi}_{6}^{u}=\tilde{\Phi}_{6}^{v}=\tilde{\Phi}_{6}^{w}=\tilde{\Phi}_{6}^{1-u}=\tilde{\Phi}_{6}^{1-v}=\tilde{\Phi}_{6}^{1-w}=0
$$

- Only independent $\{2,1\}$ coproduct:

$$
\begin{gathered}
\tilde{\Phi}_{6}^{y_{u}}=-\Omega^{(1)}(v, w, u)=-H_{2}^{u}-H_{2}^{v}-H_{2}^{w}-\ln v \ln w+2 \zeta_{2} \\
H_{2}^{u}=\mathrm{Li}_{2}(1-u)
\end{gathered}
$$

- Encapsulates first order differential equation found earlier LD, Drummond, Henn, 1104.2787

How many hexagon functions?

Irreducible (non-product) ones:

What's left?

- Enumerate all hexagon functions (obeying a \bar{Q} equation) with weight $2 L$ and correct symmetries
- Write most general linear combination with unkown rational-number coefficients
- Impose a series of physical constraints until all coefficients uniquely determined

Simple constraints on $\boldsymbol{R}_{\mathbf{6}}$

- S_{3} permutation symmetry in $\{u, v, w\}$
- Even under "parity"
- Vanishing in collinear limit

$$
v \rightarrow 0 \quad u+w \rightarrow 1
$$

Dual superconformal invariance

- Super Wilson-loops are (dual) superconformally invariant.
- But generator $\overline{\mathrm{Q}}$, a first-order differential operator, has an anomaly due to virtual collinear singularities:

$$
\overline{\mathrm{Q}} A^{(L)}{ }_{n, k} \sim \partial A_{n, k}^{(L)} \sim \int A^{(L-1)}{ }_{n+1, k+1}
$$

Caron-Huot, 1105.5606; Bullimore, Skinner, 1112.1056; Caron-Huot, He, 1112.1060

- In some directions the source term vanishes
\rightarrow all loop order differential constraints

$\overline{\mathrm{Q}}$ equation for MHV

- Constraint on first derivative of remainder function \boldsymbol{R}_{6} or $\mathcal{E}(u, v, w)$ has simple form
- In terms of the final entry of symbol, restricts to 6 of 9 possible letters:

$$
\left\{\frac{u}{1-u}, \frac{v}{1-v}, \frac{w}{1-w}, y_{u}, y_{v}, y_{w}\right\}
$$

- In terms of $\{n-1,1\}$ coproducts, equivalent to:

$$
\mathcal{E}^{u}+\mathcal{E}^{1-u}=\mathcal{E}^{v}+\mathcal{E}^{1-v}=\mathcal{E}^{w}+\mathcal{E}^{1-w}=0
$$

\bar{Q} next-to-final-entry relations

- Further homogeneous constraints on second derivatives, or $\{n-2,1,1\}$ coproducts
- only simple in terms of \mathcal{E} :

$$
\begin{aligned}
\mathcal{E}^{y_{u}, u}-\mathcal{E}^{y_{v}, w}-\mathcal{E}^{u, y_{v}}-\mathcal{E}^{1-w, y_{w}} & =0 \\
\mathcal{E}^{y_{u}, y_{u}}-\mathcal{E}^{y_{u}, y_{v}}-\mathcal{E}^{y_{u}, y_{w}}+\mathcal{E}^{y_{v}, y_{w}}+\mathcal{E}^{v, w} & =0
\end{aligned}
$$

plus all permutations
These equations prune the space of hexagon functions - even before it is constructed!

Fixing parameters in $\boldsymbol{R}_{6}{ }^{(L)}$ or $\mathcal{E}^{(L)}$

Constraint	$L=1$	$L=2$	$L=3$	$L=4$	$L=5$
0. Even integrable functions	10	82	639	5153	$? ? ? ? ?$
1. S_{3} symmetry in u, v, w	4	23	152	1085	$? ? ? ?$
2. \bar{Q} 6-final-entry condition	2	8	49	344	$? ? ? ?$
3. \bar{Q} next-to-final-entry	2	7	33	156	815
4. Collinear vanishing	0	0	1	3	41
5. LL multi-Regge kinematics	0	0	0	1	25
6. NLL MRK	0	0	0	0	3
7. NNLL MRK	0	0	0	0	0

- No OPE information needed at all now!
- Have already checked $T^{2} \times \mathrm{e}^{ \pm 2 i \phi}$ terms through 5 loops

Numerical results

- Plot perturbative coefficients on various lines and surfaces
- Instructive to take ratios of successive loop orders $\boldsymbol{R}_{6}{ }^{(L)} / \boldsymbol{R}_{6}{ }^{(L-1)}=\overline{\boldsymbol{R}}_{6}{ }^{(L)}$
- Planar N=4 SYM has no instantons and no renormalons.
- Perturbative expansion has finite radius of convergence, 1/8
- For "asymptotically large orders", $\boldsymbol{R}_{6}{ }^{(L)} / \boldsymbol{R}_{6}{ }^{(L-1)}$ should approach -8

Cusp anomalous dimension $\gamma_{K}(\lambda)$

- Known to all orders, Beisert, Eden, Staudacher [hep-th/0610251] closely related to amplitude/Wilson loop, use as benchmark for approach to large orders:

L	$\gamma_{K}^{(L)} / \gamma_{K}^{(L-1)}$	$\bar{R}_{6}^{(L)}(1,1,1)$	$\overline{\ln \mathcal{W}_{\text {hex }}^{(L)}\left(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}\right)}$	$\overline{\ln \mathcal{W}_{\text {hex }}^{(L)}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}$
2	-1.6449340	∞	-2.7697175	-2.8015275
3	-3.6188549	-7.0040885	-5.0036164	-5.1380714
4	-4.9211827	-6.5880519	-5.8860842	-6.0359857
5	-5.6547494	-6.7092373	-6.3453695	-6.4658887
6	-6.0801089	-	-	-
7	-6.3589220	-	-	-
8	-6.5608621	-	-	-
	\downarrow			
	-8			

On ($u, u, 1$), everything collapses to HPLs of u

$$
R_{6}{ }^{(L)}(\mathrm{u}, \mathrm{u}, 1) / R_{6}{ }^{(L-1)}(\mathrm{u}, \mathrm{u}, 1)
$$

Rescaled $R_{6}^{(L)}(u, u, u)$ and strong coupling

$(u, u, u) \rightarrow$ cyclotomic polylogs (weak coupling) $\arccos ^{2}(1 / 4 / u) \quad$ (strong coupling)

Beyond 6 gluons

- Cluster algebras provide strong clues to "the right functions" at least for MHV, NMHV
Golden, Goncharov, Paulos, Spradlin, Volovich, Vergu, 1305.1617, 1401.6446, 1411.3289
- E.g. symbol of 3-loop MHV 7-point amplitude Drummond, Papathanasiou, Spradlin 1412.3763
- Can turn such symbols into functions using same ideas discussed here
- Eventually elliptic functions will arise...

The big picture

Conclusions

- In planar N=4 SYM,

MHV amplitudes = bosonic Wilson loops can be bootstrapped to high loop order

- Hexagon functions $\rightarrow 6$ gluon amplitudes for all kinematics - through 5 loops so far
- Multiple cross checks and/or insights from studying OPE limits, self-crossing limits, ...
- Important avenue towards solving a 4-d QFT at finite coupling for generic kinematics

Iterative construction of hexagon functions

$$
\left.\frac{\partial F}{\partial u}\right|_{v, w}=\frac{F^{u}}{u}-\frac{F^{1-u}}{1-u}+\frac{1-u-v-w}{u \sqrt{\Delta}} F^{y_{u}}+\frac{1-u-v+w}{(1-u) \sqrt{\Delta}} F^{y_{v}}+\frac{1-u+v-w}{(1-u) \sqrt{\Delta}} F^{y_{w}}
$$

- F weight n, from F^{x} weight $n-1$ (already classified)
- Just need to impose: 1. integrability

$$
\frac{\partial^{2} F}{\partial u_{i} \partial u_{j}}=\frac{\partial^{2} F}{\partial u_{j} \partial u_{i}}, \quad i \neq j
$$

```
    F
    F
    F
F
F
F
F
F
F
F
F
F
```

```
\(F^{u, y_{u}}=F^{y_{u}, u}\)
\(F^{v, y_{v}}=F^{y_{v}, v}\),
\(F^{w, y_{w}}=F^{y_{w}, w}\),
\(F^{u, y_{w}}=F^{w, y_{u}}-F^{y_{u}, w}+F^{y_{w}, u}\),
\(F^{v, y_{u}}=F^{u, y_{v}}-F^{y_{v}, u}+F^{y_{u}, v}\),
\(F^{w, y_{v}}=F^{v, y_{w}}-F^{y_{w}, v}+F^{y_{v}, w}\),
\(F^{1-v, y_{v}}=F^{y_{v}, 1-v}-F^{y_{u}, 1-u}+F^{1-u, y_{u}}+F^{y_{u}, w}-F^{w, y_{u}}-F^{y_{w}, v}+F^{v, y_{w}}\)
\(F^{1-w, y_{w}}=F^{y_{w}, 1-w}-F^{y_{v}, 1-v}+F^{1-v, y_{v}}+F^{y_{v}, u}-F^{u, y_{v}}-F^{y_{u}, w}+F^{w, y_{u}}\)
\(F^{1-u, y_{u}}=F^{y_{u}, 1-u}-F^{y_{w}, 1-w}+F^{1-w, y_{w}}+F^{y_{w}, v}-F^{v, y_{w}}-F^{y_{v}, u}+F^{u, y_{v}}\)
\(F^{1-u, y_{v}}=F^{y_{v}, 1-u}+F^{y_{v}, w}-F^{w, y_{v}}\)
\(F^{1-v, y_{w}}=F^{y_{w}, 1-v}+F^{y_{\omega}, u}-F^{u, y_{w}}\),
\(F^{1-w, y_{u}}=F^{y_{u}, 1-w}+F^{y_{u}, v}-F^{v, y_{u}}\),
\(F^{1-u, y_{w}}=F^{y_{w}, 1-u}+F^{y_{w}, v}-F^{v, y_{w}}\),
\(F^{1-v, y_{u}}=F^{y_{u}, 1-v}+F^{y_{u}, w}-F^{w, y_{u}}\),
\(F^{1-w, y_{v}}=F^{y_{v}, 1-w}+F^{y_{v}, u}-F^{u, y_{v}}\)
```

- 2. No bad branch cuts: $F^{1-u_{i}}\left(y_{i}=1, y_{j}, y_{k}\right)=0$
L. Dixon MHV from 0 to 5 loops

Multiple zeta values at $(u, v, w)=(1,1,1)$

$$
\begin{aligned}
& R_{6}^{(2)}(1,1,1)=-\left(\zeta_{2}\right)^{2}=-\frac{5}{2} \zeta_{4} \\
& R_{6}^{(3)}(1,1,1)=\frac{413}{24} \zeta_{6}+\left(\zeta_{3}\right)^{2}
\end{aligned}
$$

First irreducible MZV

$$
\begin{aligned}
& \hline R_{6}^{(4)}(1,1,1)=-\frac{471}{4} \zeta_{8}-\frac{3}{2} \zeta_{2}\left(\zeta_{3}\right)^{2}-\frac{5}{2} \zeta_{3} \zeta_{5}+\frac{3}{2} \zeta_{5,3} \\
& \hline \hline R_{6}^{(5)}(1,1,1)= \frac{8389}{10} \zeta_{10}+12 \zeta_{2} \zeta_{3} \zeta_{5}+17 \zeta_{4}\left(\zeta_{3}\right)^{2} \\
&-\frac{63}{2} \zeta_{3} \zeta_{7}-\frac{111}{8}\left(\zeta_{5}\right)^{2}-\frac{3}{2} \zeta_{2} \zeta_{5,3}-6 \zeta_{7,3} \\
& \hline
\end{aligned}
$$

On the line $(u, u, 1)$, everything collapses to HPLs of u. In a linear representation, and a very compressed notation,

$$
H_{1}^{u} H_{2,1}^{u}=H_{1}^{u} H_{0,1,1}^{u}=3 H_{0,1,1,1}^{u}+H_{1,0,1,1}^{u} \rightarrow 3 h_{7}^{[4]}+h_{11}^{[4]}
$$

2 and 3 loop answers:

$$
\begin{aligned}
& R_{6}^{(2)}(u, u, 1)= h_{1}^{[4]}-h_{3}^{[4]}+h_{9}^{[4]}-h_{11}^{[4]}-\frac{5}{2} \zeta_{4}, \\
& R_{6}^{(3)}(u, u, 1)=-3 h_{1}^{[6]}+5 h_{3}^{[6]}+\frac{3}{2} h_{5}^{[6]}-\frac{9}{2} h_{7}^{6]}-\frac{1}{2} h_{9}^{[6]}-\frac{3}{2} h_{11}^{[6]}-h_{13}^{[6]}-\frac{3}{2} h_{17}^{[6]} \\
&+\frac{3}{2} h_{19}^{[6]}-\frac{1}{2} h_{21}^{[6]}-\frac{3}{2} h_{23}^{[6]}-3 h_{33}^{[6]}+5 h_{35}^{[6]}+\frac{3}{2} h_{37}^{[6]}-\frac{9}{2} h_{39}^{[6]} \\
&-\frac{1}{2} h_{41}^{[6]}-\frac{3}{2} h_{43}^{[6]}-h_{45}^{[6]}-\frac{3}{2} h_{49}^{[6]}+\frac{3}{2} h_{51}^{[6]}-\frac{1}{2} h_{53}^{63}-\frac{3}{2} h_{55}^{[6]} \\
&+\zeta_{2}\left[-h_{1}^{[4]}+3 h_{3}^{[4]}+2 h_{5}^{[4]}-h_{9}^{[4]}+3 h_{11}^{[4]}+2 h_{13}^{46]}\right. \\
&+\zeta_{4}\left[-2 h_{1}^{[2]}-2 h_{3}^{[2]}\right]+\zeta_{3}^{2}+\frac{413}{24} \zeta_{6}, \\
& 4 \text { loop answer } \rightarrow \\
& 5 \text { loop answer is several pages }
\end{aligned}
$$

$R_{6}^{(4)}(u, u, 1)=15 h_{1}^{[8]}-41 h_{3}^{[8]}-\frac{31}{2} h_{5}^{[8]}+\frac{105}{2} h_{7}^{[8]}-\frac{7}{2} h_{9}^{[8]}+\frac{53}{2} h_{11}^{[8]}+12 h_{13}^{[8]}-42 h_{15}^{[8]}$

$$
+\frac{5}{2} h_{17}^{[8]}+\frac{11}{2} h_{19}^{[8]}+\frac{9}{2} h_{21}^{[8]}-\frac{41}{2} h_{23}^{[8]}+h_{25}^{[8]}-13 h_{27}^{[8]}-7 h_{29}^{[8]}-5 h_{31}^{[8]}
$$

$$
+6 h_{33}^{[8]}-11 h_{35}^{[8]}-3 h_{37}^{[8]}+3 h_{39}^{[8]}-4 h_{43}^{[8]}-4 h_{45}^{[8]}-11 h_{47}^{[8]}+\frac{3}{2} h_{49}^{[8]}-\frac{3}{2} h_{51}^{[8]}
$$

$$
-3 h_{53}^{[8]}-5 h_{55}^{[8]}+\frac{3}{2} h_{57}^{[8]}-\frac{3}{2} h_{59}^{[8]}+9 h_{65}^{[8]}-25 h_{67}^{[8]}-9 h_{69}^{[8]}+27 h_{71}^{[8]}-2 h_{73}^{[8]}
$$

$$
+9 h_{75}^{[8]}+2 h_{77}^{[8]}-23 h_{79}^{[8]}+2 h_{81}^{[8]}-h_{85}^{[8]}-8 h_{87}^{[8]}+2 h_{89}^{[8]}-3 h_{91}^{[8]}+\frac{5}{2} h_{97}^{[8]}
$$

$$
-\frac{7}{2} h_{99}^{[8]}-\frac{1}{2} h_{101}^{[8]}+\frac{5}{2} h_{103}^{[8]}+\frac{1}{2} h_{105}^{[8]}+\frac{1}{2} h_{107}^{[8]}+\frac{1}{2} h_{109}^{[8]}-\frac{5}{2} h_{111}^{[8]}+15 h_{129}^{[8]}
$$

$$
-41 h_{131}^{[8]}-\frac{31}{2} h_{133}^{[8]}+\frac{105}{2} h_{135}^{[8]}-\frac{7}{2} h_{137}^{[8]}+\frac{53}{2} h_{139}^{[8]}+12 h_{141}^{[8]}-42 h_{143}^{[8]}
$$

$$
+\frac{5}{2} h_{145}^{[8]}+\frac{11}{2} h_{147}^{[8]}+\frac{9}{2} h_{149}^{[8]}-\frac{41}{2} h_{151}^{[8]}+h_{153}^{[8]}-13 h_{155}^{[8]}-7 h_{157}^{[8]}
$$

$$
-5 h_{159}^{[8]}+6 h_{161}^{[8]}-11 h_{163}^{[8]}-3 h_{165}^{[8]}+3 h_{167}^{[8]}-4 h_{171}^{[8]}-4 h_{173}^{[8]}
$$

$$
-11 h_{175}^{[8]}+\frac{3}{2} h_{177}^{[8]}-\frac{3}{2} h_{179}^{[8]}-3 h_{181}^{[8]}-5 h_{183}^{[8]}+\frac{3}{2} h_{185}^{[8]}-\frac{3}{2} h_{187}^{[8]}
$$

$$
+9 h_{193}^{[8]}-25 h_{195}^{[8]}-9 h_{197}^{[8]}+27 h_{199}^{[8]}-2 h_{201}^{[8]}+9 h_{203}^{[8]}+2 h_{205}^{[8]}-23 h_{207}^{[8]}
$$

$$
+2 h_{209}^{[8]}-h_{213}^{[8]}-8 h_{215}^{[8]}+2 h_{217}^{[8]}-3 h_{219}^{[8]}+\frac{5}{2} h_{225}^{[8]}-\frac{7}{2} h_{227}^{[8]}-\frac{1}{2} h_{229}^{[8]}
$$

$$
+\frac{5}{2} h_{231}^{[8]}+\frac{1}{2} h_{233}^{[8]}+\frac{1}{2} h_{235}^{[8]}+\frac{1}{2} h_{237}^{[8]}-\frac{5}{2} h_{239}^{[8]}
$$

$$
+\zeta_{2}\left[2 h_{1}^{[6]}-14 h_{3}^{[6]}-\frac{15}{2} h_{5}^{[6]}+\frac{37}{2} h_{7}^{[6]}-\frac{5}{2} h_{9}^{[6]}+\frac{25}{2} h_{11}^{[6]}+7 h_{13}^{[6]}-\frac{1}{2} h_{17}^{[6]}\right.
$$

$$
+\frac{5}{2} h_{19}^{[6]}+\frac{7}{2} h_{21}^{[6]}+\frac{9}{2} h_{23}^{[6]}-3 h_{25}^{[6]}+3 h_{27}^{[6]}+2 h_{33}^{[6]}-14 h_{35}^{[6]}-\frac{15}{2} h_{37}^{[6]}
$$

$$
+\frac{37}{2} h_{39}^{[6]}-\frac{5}{2} h_{41}^{[6]}+\frac{25}{2} h_{43}^{[6]}+7 h_{45}^{[6]}-\frac{1}{2} h_{49}^{[6]}+\frac{5}{2} h_{51}^{[6]}+\frac{7}{2} h_{53}^{[6]}
$$

$$
\left.+\frac{9}{2} h_{55}^{[6]}-3 h_{57}^{[6]}+3 h_{59}^{[6]}\right]
$$

$$
+\zeta_{4}\left[\frac{15}{2} h_{1}^{[4]}-\frac{55}{2} h_{3}^{[4]}-\frac{41}{2} h_{5}^{[4]}+\frac{15}{2} h_{9}^{[4]}-\frac{55}{2} h_{11}^{[4]}-\frac{41}{2} h_{13}^{[4]}\right]
$$

$$
+\left(\zeta_{2} \zeta_{3}-\frac{5}{2} \zeta_{5}\right)\left[h_{3}^{[3]}+h_{7}^{[3]}\right]-\left(\zeta_{3}^{2}-\frac{73}{4} \zeta_{6}\right)\left[h_{1}^{[2]}+h_{3}^{[2]}\right]
$$

$$
-\frac{3}{2} \zeta_{2} \zeta_{3}^{2}-\frac{5}{2} \zeta_{3} \zeta_{5}-\frac{471}{4} \zeta_{8}+\frac{3}{2} \zeta_{5,3} .
$$

Fermilab March 16, 2016

MRK MHV Master formula

NLL: Fadin, Lipatov, 1111.0782; Caron-Huot, 1309.6521

$$
\begin{aligned}
& \left.e^{R+i \pi \delta}\right|_{\mathrm{MRK}}=\cos \pi \omega_{a b}+i \frac{a}{2} \sum_{n=-\infty}^{\infty}(-1)^{n}\left(\frac{w}{w^{*}}\right)^{\frac{n}{2}} \int_{-\infty}^{+\infty} \frac{d \nu}{\nu^{2}+\frac{n^{2}}{4}}|w|^{2 i \nu} \Phi_{\mathrm{Reg}}(\nu, n) \\
& \\
& \\
& \times\left(-\frac{1}{1-u} \frac{|1+w|^{2}}{|w|}\right) \sqrt{\omega(\nu, n)} \\
& w=-z, \quad w^{*}=-\bar{z}
\end{aligned}
$$

MRK limits agree through 5 loops with all-orders predictions
 Basso, Caron-Huot, Sever 1407.3766

- BFKL eigenvalue:

$$
E^{(1)}(\nu, n), E^{(2)}(\nu, n), E^{(3)}(\nu, n), E^{(4)}(\nu, n)
$$

LL, NLL, NNLL, NNNLL

- Impact factors:

$$
\Phi_{\text {Reg }}^{(1)}(\nu, n), \Phi_{\text {Reg }}^{(2)}(\nu, n), \Phi_{\text {Reg }}^{(3)}(\nu, n), \Phi_{\text {Reg }}^{(4)}(\nu, n)
$$

- All zeta-valued linear combinations of: derivatives of $\ln \Gamma\left(1 \pm i \nu+\frac{n}{2}\right)$

$$
\frac{i \nu}{\nu^{2}+\frac{n^{2}}{4}}, \frac{n}{\nu^{2}+\frac{n^{2}}{4}}
$$

Hexagon functions are multiple polylogarithms in y_{i}

$G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right)$

Region I: $\left\{\begin{array}{l}\Delta>0, \quad 0<u_{i}<1, \quad \text { and } \quad u+v+w<1, \\ 0<y_{i}<1 .\end{array}\right.$

$$
\mathcal{G}=\left\{G\left(\vec{w} ; y_{u}\right) \mid w_{i} \in\{0,1\}\right\} \cup\left\{G\left(\vec{w} ; y_{v}\right) \left\lvert\, w_{i} \in\left\{0,1, \frac{1}{y_{u}}\right\}\right.\right\} \cup\left\{G\left(\vec{w} ; y_{w}\right) \left\lvert\, w_{i} \in\left\{0,1, \frac{1}{y_{u}}, \frac{1}{y_{v}}, \frac{1}{y_{u} y_{v}}\right\}\right.\right\}
$$

- Useful for analytics and for numerics for $\Delta>0$ GINAC implementation: Vollinga, Weinzierl, hep-th/0410259

A menagerie of functions

1. HPLs: One variable, symbol letters $\{u, 1-u\}$. Near-collinear limit, lines $(u, u, 1),(u, 1,1)$
2. Cyclotomic Polylogarithms [Ablinger, Blumlein, Schneider, 1105.6063]: One variable, letters $\left\{y_{u}, 1+y_{u}, 1+y_{u}+y_{u}{ }^{2}\right\}$. For line (u, u, u).
3. SVHPLs [F. Brown, 2004]: Two variables, letters $\{z, 1-z, \bar{z}, 1-\bar{z}\}$. First entry/single-valuedness constraint (real analytic function in z plane). Multi-Regge limit.
4. Full hexagon functions. Three variables, symbol letters $\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}$, branch-cut condition
