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Goal

Mathematical structures in planar N=4 SYM

The first instance of this phenomenon is extremely simple and trivial. Consider

an analog of the “factorization channel” diagram (2.22), but connecting two black

vertices. Because these vertices require that all the e�’s be parallel, it makes no

physical di↵erence how they are connected. And so, on-shell diagrams related by,

(2.28)

represent the same on-shell form. Thus, we can collapse and re-expand any chain

of connected black vertices in anyway we like; the same is obviously true for white

vertices. Because of this, for some purposes it may be useful to define composite black

and white vertices with any number of legs. By grouping black and white vertices

together in this way, on-shell diagrams can always be made bipartite—with (internal)

edges only connecting white with black vertices. We will, however, preferentially

draw trivalent diagrams because of the fundamental role played by the three-particle

amplitudes.

There is also a more interesting equivalence between on-shell diagrams that will

play an important role in our story. We can see this already in the BCFW represen-

tation of the four-particle amplitude given above, (2.20). The picture is obviously not

cyclically invariant—as a rotation would exchange its black and white vertices. But

the four-particle amplitude of course is cyclically invariant; and so there is another

generator of equivalences among on-shell diagrams, the “square move”, [80]:

(2.29)

The merger and square moves can be used to show the physical equivalence of

many seemingly di↵erent on-shell diagrams. For instance, the following two diagrams

generate physically equivalent on-shell forms:

(2.30)
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Plan of the talk

✤ Geometric picture for integrand in planar N=4 SYM

✤ Singularity structure of non-planar amplitudes

✤ Towards supergravity amplitudes



Hidden simplicity in amplitudes

✤ Once upon a time there was a MHV amplitude….

✤ Amplitudes are more than sums of Feynman diagrams

A =
h12i4

h12ih23ih34i . . . hn1i

First evidence for simplicity 
in scattering amplitudes



Singularities of amplitudes

✤ Scattering amplitudes of massless particles in D=4

✤ General idea: amplitudes are fixed from their singularities

✤ Locality: only         present

✤ Unitarity: factorization on poles

A =
X

j

Z
dIj =

Z
dI

Integrand is an 
ideal object

to construct/study

1

P 2



✤ Iterative use of the unitary cut

✤ Generate basis of integrals, fixing coefficients from cuts

✤ Tremendous success                                                             
in calculations in 1990-today

✤           Blackhat: QCD background

Unitarity methods
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BCFW recursion relations

✤ Large class of theories at tree-level

✤ Tree-level unitarity

✤ Shift momenta + Cauchy formula 

✤ Very efficient method: 

p1 ! p1 + zq
p2 ! p2 � zq

(Britto, Cachazo, Feng, Witten 2005)

Feynman diagrams

Recursion relations
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gg ! 4g gg ! 5g gg ! 6g



Hydrogen atom of gauge theories

✤ N=4 Super Yang-Mills theory in the planar limit

✤ Great toy model for QCD

✤ Past: new methods for amplitudes originated here

Tree-level amplitudes identical

Convergent perturbative series, no confinement

Hidden symmetries in the theory



Planar N=4 SYM theory

✤ Useful playground for many theoretical ideas

Integrability
Yangian

AdS/CFT
Strong coupling

Wilson loops
OPE expansion

Twistor strings
Hexagon 
bootstrap

BDS ansatz



Dual variables

✤ Generally, each diagram has its own variables

✤ Planar limit: dual variables

No global loop momenta
Each diagram: its own labels
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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pi = xi+1 � xi



Dual conformal symmetry

✤ Using these variables: define a single function

✤ Tree-level amplitudes + integrand in planar N=4 SYM:                                           

✤ Superconformal symmetry + Dual -> Yangian

Dual conformal symmetry

(Drummond, Henn, Plefka 2009)(Drummond, Henn, Korchemsky, Sokatchev 2008)

M =

Z
d

4
y1 . . . d

4
yL I(xi, yj)

Integrand
Unique in planar N=4 SYM

(Drummond, Henn, Smirnov, Sokatchev 2007)



Momentum twistors

p
4

p
2

p
6 p

5

p
3

x1 x5

x6

x2 x3

x4

Z1

Z2

x1

Z2

Z1

Z5

Z6

Z3 Z4

Dual Space−Time

p
1

Momentum Twistor Space

✤ New variables: points in P3

(Hodges 2009)

Dual conformal
symmetry acts 
as SL(4) on Z

Z =
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Momentum twistors

✤ Dual conformal invariants: 

✤ Functions of momenta only: projective

✤ Infinity twistor        breaks dual conformal symmetry 

h1234i = ✏abcdZ
a
1Z

b
2Z

c
3Z

d
4

Iab

h12i = h12Ii = ✏abcdZ
a
1Z

b
2I

cd

h1234ih4561i
h1245ih3461i

hABd2AihABd2Bih1234i2

hAB12ihAB23ihAB34ihAB41i

`2 =
hAB41i
hABih41i

box 
integral

cross 
ratio



✤ Terms in BCFW recursion: products of on-shell amplitudes

✤ Each term separately Yangian invariant

✤ Iterate until all vertices are 3pt: on-shell diagrams

Manifest Yangian symmetry

=
X

L,R

Tension between
locality and symmetry



On-shell diagrams
(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)



✤ Draw arbitrary graph with three point vertices

On-shell diagrams

Products of three point 
amplitudes

P > 4L

P = 4L

P < 4L

( Extra delta functions
Function of external data only
Unfixed parameters (forms)



✤ Example of 6pt amplitude

✤ Each diagram: on-shell, gauge invariant function

✤ Same pictures: cuts of the loop amplitudes with 

+

On-shell diagram expansion

+=

X

L,R

�(P 2)

Planar N=4: Yangian invariant [12345]



Loop recursion relations

✤ Recursion relations for    -loop integrand

✤ Example: 4pt 1-loop

+
X

L,R

=

`

5-loop on-shell diagram =      
1-loop off-shell box

(Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, JT 2010)



Permutations

✤ Represent graphically permutation

✤ Graph with only 3pt vertices

Turn right on blue
Turn left on white

Tree-level amplitudes: list of permutations



Positive Grassmannian

✤ Space of n points in k-dim projective space with linear 
dependencies between consecutive points

✤             real matrix with positive main              minors 

✤ How to construct this matrix? Using the same diagrams

0

@
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤

1

A$

(k ⇥ n) (k ⇥ k)



✤ Construct big positive matrix from small ones

✤ Arbitrary graph: positive matrix

Amalgamation procedure

✓
⇤ ⇤ ⇤ ⇤ ⇤
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◆
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Poincaréinvarianceinthesameway,butariseonlyintheorieswithhigher-dimension

operatorslikeF
3

orR
3

.Ingeneral,Poincaréinvariancefixesthekinematicalde-

pendenceofthethree-particleamplitudeinvolvingmasslessparticleswitharbitrary

helicitiestobe,[69]:
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Asmentionedabove,inmaximallysupersymmetrictheoriesallhelicitystates

areunifiedinasinglesuper-multiplet,andsothereisnoneedtodistinguishamong

theparticularhelicitiesofparticlesinvolved;andso,wemayconsiderthesimpler,

cyclically-invariantamplitudes:
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is simply a label denoting the possible distinguishable states in the theory). General

considerations of quantum mechanics and locality (see e.g. [69]) require that any such

prefactor must be fully antisymmetric and satisfy a Jacobi identity—implying that

color labels combine to form the adjoint representation of a Lie algebra. The most

physically interesting case is when this is the algebra of U(N); in this case, N can be

viewed as a parameter of the theory, and scattering amplitudes can be expanded in
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Connection to amplitudes

✤ Building positive matrix: face or edge variables 

✤ Same function as a product of 3pt amplitudes equal to

4.6 Coordinate Transformations Induced by Moves and Reduction

Let us now examine how the identification of diagrams via merge-operations, square-

moves, and bubble-deletion is reflected in the coordinates—the edge- or face-variables

—used to parameterize cells C 2 G(k, n). As usual, the simplest of these is the

merge/un-merge operation which trivially leaves any set of coordinates unchanged.

For example, in terms of the face variables, it is easy to see that

(4.62)

The square-move is more interesting. It is obvious that squares with opposite coloring

both give us a generic configuration in G(2, 4), but (as we will soon see), the square-

move acts rather non-trivially on coordinates used to parameterize a cell,

(4.63)

Let us start by determining the precise way the face-variables f
i

and f 0
i

of square-

move related diagrams are related to one another. To do this, we will provide perfect

orientations (decorated with edge variables) for both graphs, allowing us to com-

pare the resulting boundary-measurement matrices in each case. Because these two

boundary measurement matrices must represent the same point in G(2, 4), we will

be able to explicitly determine how all the various coordinate charts are related—

including the relationship between the variables f
i

and f 0
i

. Our work will be consid-

erably simplified if we remove the GL(1)-redundancies from each vertex, leaving us

with a non-redundant set of edge-variables. Of course, any choice of perfect orienta-

tions for the graphs, and any fixing of the GL(1)-redundancies would su�ce for our

purposes; but for the sake of concreteness, let us consider the following:
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(4.64)
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Logarithmic singularities

✤ Amplitude = sum of on-shell diagrams

✤ More than single poles: 

✤ Logarithmic singularities specific for planar N=4 SYM

✤ Dlog form: close relation to maximal transcendentality

near any pole

dx dy

xy(x+ y)
x=0��! dy

y

2

⌦ = F (↵) �(C · Z)

⌦ ⇠ d↵

↵
↵ = F (`j , pi)

Generic QFT:



Geometric interpretation

✤ On-shell diagrams: regions (cells) in the Grassmannian

✤ Logarithmic form: “volume” of this region

✤ Amplitude: sum of on-shell diagrams

✤ Question: Is there a complete geometric definition?

Given by BCFW: unitarity



Amplituhedron
(Arkani-Hamed, JT 2013)



Volume of polyhedron

✤ Tree-level process:                  in momentum twistor space 

✤ Comparison of two calculations of recursion relations

✤ Even simpler case: polygon

(Hodges 2009)

gg ! 5g

THE 3D INDEX OF AN IDEAL TRIANGULATION AND ANGLE STRUCTURES 7

that recover the complete hyperbolic structure. A case-by-case analysis shows that this ex-
ample admits an index structure, thus the index IT exists. This example appears in [HRS,
Example 7.7]. We thank H. Segerman for a detailed analysis of this example.

2.4. On the topological invariance of the index. Physics predicts that when defined,
the 3D index IT depends only on the underlying 3-manifold M . Recall that [HRS] prove
that every hyperbolic 3-manifold M that satisfies

(2.9) H1(M,Z/2) → H1(M, ∂M,Z/2) is the zero map

(eg. a hyperbolic link complement) admits an ideal triangulation with a strict angle struc-
ture, and conversely if M has an ideal triangulation with a strict angle structure, then M is
irreducible, atoroidal and every boundary component of M is a torus [LT08].

A simple way to construct a topological invariant using the index, would be a map

M "→ {IT | T ∈ SM}

where M is a cusped hyperbolic 3-manifold with at least one cusp and SM is the set of ideal
triangulations of M that support an index structure. The latter is a nonempty (generally
infinite) set by [HRS], assuming that M satisfies (2.9). If we want a finite set, we can use
the subset SEP

M of ideal triangulations T of M which are a refinement of the Epstein-Penner
cell-decomposition of M . Again, [HRS] implies that SEP

M is nonempty assuming (2.9). But
really, we would prefer a single 3D index for a cusped manifold M , rather than a finite
collection of 3D indices.

It is known that every two combinatorial ideal triangulations of a 3-manifold are related
by a sequence of 2-3 moves [Mat87, Mat07, Pie88]. Thus, topological invariance of the 3D
index follows from invariance under 2-3 moves.

Consider two ideal triangulations T and T̃ with N and N+1 tetrahedra related by a 2−3
move shown in Figure 1.

Figure 1. A 2–3 move: a bipyramid split into N tetrahedra for T and N + 1 tetrahedra for

T̃ .

Proposition 2.13. If T̃ admits a strict angle structure structure, so does T and IT̃ = IT .

For the next proposition, a special index structure on T is given in Definition 6.2.

(Picture by Stavros Garoufalidis)



✤ Consider a point inside a polygon in projective plane

Point inside the polygon

Z1

Z2

Z3
Z4

Z5

Z6

Y Space of all points
inside convex polygon

Y = c1Z1 + c2Z2 + . . . cnZn

C =
�
c1 c2 c3 . . . cn

�
2 G+(1, n)

Form with logarithmic
singularities on boundaries

Z =

0

@
" " " " "
Z1 Z2 Z3 . . . Zn

# # # # #

1

A 2 M+(3, n)⌦(Y, Zi)



Triangulation

✤ BCFW using on-shell diagrams is a triangulation
✤ Consider a point inside a polygon in projective plane

Point inside the polygon

Z1

Z2

Z3
Z4

Z5

Z6

Y

Y = C · Z

Space of all points
inside convex polygon

Y = c1Z1 + c2Z2 + . . . cnZn

C =
�
c1 c2 c3 . . . cn

�
2 G+(1, n)

Z =

0

@
" " " " "
Z1 Z2 Z3 . . . Zn

# # # # #

1

A 2 M + (3, n)

More formally:

C =
�
1 0 0 c4 c5 0

�
2 G+(1, 6)

⌦ =
dc4
c4

dc5
c5

Supersymmetry 
-> higher dimensional

bosonic space



Road to Amplituhedron

1

2 3

5
4

Start: 
Point inside a 

convex polygon



Road to Amplituhedron
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Road to Amplituhedron

1

2 3

5
4

3

2

1
6

7

4

5

Start: 
Point inside a 

convex polygon

Amplituhedron An,k,`

A k-dim plane and ` lines
inside a (k + 4)-dim convex

space defined by n vertices



Amplituhedron conjecture

✤ Volume of             :

✤ Consistency check: Locality and Unitarity

✤ Explicit checks against reference theoretical data

Loop integrand in maximally
supersymmetric Yang-Mills theory

number of particles

k
helicity information

`
number of loops

` = 0 : Amplitudes of gluons in QCD

An,k,` n



Positivity of amplitudes

✤ All terms combined in the amplitude

✤ Illegal singularities in denominator

✤ Numerator fixed by zeroes

✤ Amplitude positive (for points inside): volume interpretation

I =

(Numerator)

(all poles)

Points outside Amplituhedron
Canceling higher poles

(Arkani-Hamed, Hodges, JT, 2014)

It represents cod-1 
surface outside 
Amplituhedron



Singularities of  
non-planar amplitudes



✤ No unique integrand, labeling problem

✤ No momentum twistors, no known symmetries

✤ On-shell diagrams for singularities

What is     ?

Non-planar amplitudes in N=4 SYM

1 1 1

222 3

3

3 4

44

Let us now show that n= nW 0 , which implies that there are no black-to-black

internal edges. Let us say the number of white multi-vertices is n+q; we want to

show that q=0. From the definition of k,

k = 2nB + nW 0 � nI = 2nB + (n+ q)� nI = 3nB + 2 + q � nI , (2.5)

from which we see that for k = 2, 3nB = nI q. But 3nB � nI on general grounds,

and so we must have that q=0, and hence 3nB=nI . Because q=0, there is one leg

connected to each white multi-vertex (nW 0 =n); and because 3nB=nI , there can be

no black-to-black internal edges. Thus every black vertex connects to precisely three

external legs via white multi-vertices, as we wanted to prove.

Therefore, any MHV (k = 2) on-shell diagram corresponding to an ordinary

function of the external data (n�=0) with kinematical support will involve precisely

(n 2) black vertices, each of which is attached to exactly three external legs via

white vertices. Thus, we can label any such diagram by a set T consisting of triplets

⌧ 2T of leg labels for each of the (n 2) black vertices.

We can illustrate how this labeling works with the following examples:

⇢
(1 2 4)

(2 3 4)

� 8
<

:

(1 2 3)

(1 3 4)

(1 3 5)

9
=

; (2.6)

8
>>><

>>>:

(1 2 3)

(2 5 6)

(3 4 6)

(4 5 1)

9
>>>=

>>>;

8
>>>>>>>>><

>>>>>>>>>:

(1 2 4)

(1 8 9)

(2 9 3)

(3 6 4)

(4 6 5)

(6 8 7)

(6 9 8)

9
>>>>>>>>>=

>>>>>>>>>;

(2.7)

Notice that because there is no preferred way to order the external legs of a non-

planar diagram, there is no preferred way to order the triples. And so while we

have chosen a particular ordering for each triple in the examples above, these choices

should be viewed as completely arbitrary.

– 5 –

No recursion relations

`



✤ Non-planar diagrams

✤ Conjecture: logarithmic singularities of the amplitude

Non-planar on-shell diagrams

Let us now show that n= nW 0 , which implies that there are no black-to-black
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and so we must have that q=0, and hence 3nB=nI . Because q=0, there is one leg

connected to each white multi-vertex (nW 0 =n); and because 3nB=nI , there can be

no black-to-black internal edges. Thus every black vertex connects to precisely three

external legs via white multi-vertices, as we wanted to prove.

Therefore, any MHV (k = 2) on-shell diagram corresponding to an ordinary

function of the external data (n�=0) with kinematical support will involve precisely

(n 2) black vertices, each of which is attached to exactly three external legs via

white vertices. Thus, we can label any such diagram by a set T consisting of triplets

⌧ 2T of leg labels for each of the (n 2) black vertices.
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Notice that because there is no preferred way to order the external legs of a non-
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(Arkani-Hamed, Bourjaily, Cachazo, Postnikov, JT, 2014)
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Same logarithmic form
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MHV on-shell diagrams

✤ Planar sector: all are Parke-Taylor factors

✤ Non-planar diagrams: holomorphic functions

=
1

h12ih23ih34ih45ih51i

required by
superconformal

symmetry

Let us now show that n= nW 0 , which implies that there are no black-to-black

internal edges. Let us say the number of white multi-vertices is n+q; we want to

show that q=0. From the definition of k,
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Notice that because there is no preferred way to order the external legs of a non-

planar diagram, there is no preferred way to order the triples. And so while we

have chosen a particular ordering for each triple in the examples above, these choices
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=
(h34ih51ih62i+ h14ih25ih63i)2

h12ih23ih31ih25ih56ih62ih34ih46ih63ih45ih51ih14i

= PT (12345)



MHV on-shell diagrams

✤ Planar sector: all are Parke-Taylor factors

✤ Non-planar diagrams: holomorphic functions

=
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required by
superconformal

symmetry
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internal edges. Let us say the number of white multi-vertices is n+q; we want to

show that q=0. From the definition of k,
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and so we must have that q=0, and hence 3nB=nI . Because q=0, there is one leg

connected to each white multi-vertex (nW 0 =n); and because 3nB=nI , there can be

no black-to-black internal edges. Thus every black vertex connects to precisely three

external legs via white multi-vertices, as we wanted to prove.

Therefore, any MHV (k = 2) on-shell diagram corresponding to an ordinary

function of the external data (n�=0) with kinematical support will involve precisely

(n 2) black vertices, each of which is attached to exactly three external legs via

white vertices. Thus, we can label any such diagram by a set T consisting of triplets
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= PT (12345)

= PT (123456) + PT (124563) + PT (142563) + PT (145623)

+PT (146235) + PT (146253) + PT (162345)

Linear combination of Parke-Taylor factors



Dual conformal symmetry

✤ Conservative approach: amplitude as a sum of integrals

✤ Planar limit: integrals     dual conformal invariant (DCI)

✤ How to distinguish: DCI vs non-DCI ?
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
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almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.
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Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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Source of poles at infinity

✤ Planar: triangle sub-diagrams present

✤ Non-planar: more types of poles at infinity
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Logarithmic singularities vs DCI

✤ Multiple poles in the cut structure
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(5a)

Figure 18. A sample five-loop planar diagram. Shaded (red) dots and labels represent dual

coordinates.

(5b) (5c) (5d) (5e)

Figure 19. Descendants of the five-loop planar diagram of Fig. 18 with numerator coe�-

cients determined to be non-zero by testing for non-logarithmic singularities.

7.4 Applications of three types of rules

We now consider three examples to illustrate the rules. First we examine a five-loop

example where the rules forbid certain dual conformal numerators from contributing to

the amplitude. We will see in that example that double poles beyond the scope of the

above three rules determine relative coe�cients between integrands consistent with the

reference data [98, 103]. We then consider two di↵erent six-loop diagrams that have

zero coe�cient in the expansion of the amplitude. In the first example, the three rules

are su�cient to determine that the numerator has zero coe�cient in the amplitude,

while the integrand in the second example has hidden double poles not accounted for

by the rules.

We first consider the diagram of Fig. 18. We take a slightly di↵erent approach here

than in previous subsections. First we list the set of all dual conformal numerators

allowed by power counting, then eliminate numerators that do not pass the three rules

– 63 –
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✤ Expansion for the (MHV) amplitude
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Explicit checks

✤ Construct basis for 4pt at 2-loop and 3-loop, 5pt 2-loop

3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.

To initially constrain the parameters, we use the uni-
tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({ V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({ V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({ V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.

We also construct another version of the three-loop
four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.

An important feature of the supergravity solution dis-
played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
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While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
dlog-form, I
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
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Table 1. The basis of numerators for pure integrands for the three-loop four-point amplitude.
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Expand the 
amplitude:

(Bern, Herrmann, Litsey, Stankowicz, JT 2014, 2015)(Arkani-Hamed, Bourjaily, Cachazo, JT, 2014)



Explicit checks

✤ Construct basis for 4pt at 2-loop and 3-loop, 5pt 2-loop

3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.

To initially constrain the parameters, we use the uni-
tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({ V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({ V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({ V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.

We also construct another version of the three-loop
four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.

An important feature of the supergravity solution dis-
played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,
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While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
dlog-form, I
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�

In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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Expand the 
amplitude:

(Arkani-Hamed, Bourjaily, Cachazo, JT, 2014) (Bern, Herrmann, Litsey, Stankowicz, JT 2014, 2015)

Coefficient fixed
by standard

unitarity 
methods



Coefficients from zeroes

✤ Go even further in the analogy with planar

✤ Use only equations of type

✤ In planar: conjecture, evidence for dual Amplituhedron

✤ Conjecture:

Cut I = 0

A =
X
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ai · Ci · Ii

Fixed by vanishing cuts

Test for our three cases:

(Bern, Herrmann, Litsey, Stankowicz, JT 2015)

Illegal cuts: non-MHV or spurious cuts
No target (product of trees) necessary
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Example of zero condition

✤ Expansion of the amplitude
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the bubble integration measure is not logarithmic,
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop

4,N =
KN
4

X

�2S4

Z h
C

(P )

�,NI(P )

� +C
(NP )

�,N I(NP )

�

i
�

4|2N�
�·q

�
(5)

where � is a permutation of the external legs and
�

4|2N (�·q) encodes super-momentum conservation with

q⌘(e�, e⌘); the factors KN are the permutation-invariants,

K
4

⌘ [3 4][4 1]

h1 2ih2 3i and K
8

⌘
✓

[3 4][4 1]

h1 2ih2 3i

◆
2

; (6)

the integration measures I(P )

� , I(NP )

� correspond to,

I(P )

1,2,3,4 ⌘ (p
1

+ p

2

)2 ⇥ (7)

and

I(NP )

1,2,3,4 (8)

for � = {1, 2, 3, 4}; and the coe�cients C

(P ),(NP )

{1,2,3,4},N are
the color-factors constructed out of structure constants
f

abc’s according to the diagrams above for N =4, and are
both equal to (p

1

+ p

2

)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
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In order to write I(P )

1,2,3,4 in dlog-form, we should
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This is accomplished by rescaling it according to:
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are the usual Mandelstam invariants. Now that it is
properly normalized, we can introduce an ephemeral
extra propagator by multiplying the integrand by
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Example of zero condition

✤ Expansion of the amplitude
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.
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Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and
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the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
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� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
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In order to write I(P )
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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maximally transcendental, and free of any poles at
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� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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Non-planar N=4 conclusion

✤ Amplitudes (integrands) in complete N=4 SYM:

✤ Homogeneous conditions define the amplitude

Analogue of dual conformal symmetry
On-shell diagrams/Amplituhedron insights

No poles at infinity
Special leading singularities

Logarithmic singularities
Zero conditions

This is begging for geometric/volume interpreation
Role of color factors?



Few words about 
supergravity amplitudes 



Similarities with Yang-Mills

✤ BCJ relations

✤ Squaring has dramatic consequences on singularities

✤ Loop amplitudes in N=8 SUGRA: poles at infinity

Supergravity

• No poles at infinity ! UV finiteness.

• For N = 4 SYM: integrand-based derivation of UV finiteness.

• If true for N = 8 SYM: trivially UV finite as well.

• Explicit checks of poles at infinity
I No poles at 1-loop and 2-loops.

I Logarithmic at 3-loops.

I Non-logarithmic at 4-loops, . . . .

5 6

1

2 3

4

• Results: Poles at infinity are present.

Bad UV behavior 
of integrals

in the amplitude

A(YM) =
X

j

njcj
sj

! A(GR) =
X

j

n2
j

sj



Gravity on-shell diagrams

✤ Well defined on-shell objects

✤ No recursion relations, capture singularity structure

✤ MHV on-shell diagrams: not holomorphic in N=8
Example 3

1

2

3

4

5

6

p

q-1

r-
Q

123

OGR =
h5|1 + 6|2]h2|3 + 4|5][16]2[34]2
h12ih23ih34ih45ih56ih61ih25i2

OYM =
1

h12ih23ih34ih45ih56ih61i

p =
h56i
h15i�1

e�6 r �Q123 =
h32i
h24i�4

e�3

p� 1 = ��1 Q56 · �5

h15i r �Q12 =
h34i
h24i�2

e�3

p+ 6 =
h16i
h15i�5

e�6 r +Q56 =
�4 Q34 · �2

h24i
p� q =

h12i
h15ih25i�5 Q16 · �5 r � q =

h45i
h24ih25i�2 Q34 · �2

q � 1 =
�2 Q16 · �5

h25i q �Q12 =
�2 Q34 · �5

h25i
q +Q56 =

�5 Q34 · �2

h25i q + 6 =
�5 Q16 · �2

h25i

Example 3.1 - Square Move on the box

OGR =
h5|1 + 6|2]h2|3 + 4|5][16]2[34]2
h12ih23ih34ih45ih56ih61ih25i2

OYM =
1

h12ih23ih34ih45ih56ih61i

p =
h56i
h15i�1

e�6 r �Q123 =
h45i
h35i�3

e�4

p� 1 = ��1 Q56 · �5

h15i r �Q12 =
�3 Q34 · �5

h35i
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h16i
h15i�5

e�6 r +Q56 =
h34i
h35i�5

e�4

p� q =
h12i

h15ih25i�5 Q16 · �5 r � q =
h32i

h35ih25i�5 Q34 · �5

q � 1 =
�2 Q16 · �5

h25i q �Q12 =
�2 Q34 · �5

h25i
q +Q56 =

�5 Q34 · �2

h25i q + 6 =
�5 Q16 · �2

h25i

– 45 –

=
1

h12ih23ih34ih45ih45ih56ih61i

in N=4 SYM

(Herrmann, JT, in progress)



Gravity on-shell diagrams

✤ Well defined on-shell objects

✤ No recursion relations, capture singularity structure

✤ MHV on-shell diagrams: not holomorphic in N=8
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– 45 –
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=
h5|1 + 6|2]h2|3 + 4|5][16]2[34]2

h12ih23ih34ih45ih45ih56ih61ih25i2

(Herrmann, JT, in progress)



Gravity on-shell diagrams

✤ Default way to calculate: product of 3pt amplitudes

✤ Amalgamation of 3pt vertices: Grassmannian formula

✤ Rules to define the form globally needed
Does not preserve logarithmic or any other nice form

⌦ = F (↵) �(C · Z)

(Herrmann, JT, in progress)

We start to understand 
how it looks like

Dramatic implications
for singularities of
gravity amplitudes



Conclusion



✤ Planar N=4 SYM: on-shell diagrams, Amplituhedron

✤ Non-planar N=4 SYM: same properties seem to hold

✤ Gravity in progress

Conclusion

Evidence for non-planar 
geometric construction

Good variables
needed



Thank you for your attention


