Geometry of non-planar amplitudes

Freddy Cachazo Enrico Herrmann Andrew Hodges Sean Litsey
Alexander Postnikov James Stankowicz

Goal

Mathematical structures in planar N=4 SYM

Other theories

Goal

Mathematical structures in planar N=4 SYM

Plan of the talk

\because Geometric picture for integrand in planar N=4 SYM
\% Singularity structure of non-planar amplitudes
\% Towards supergravity amplitudes

Hidden simplicity in amplitudes

\% Once upon a time there was a MHV amplitude....

$$
A=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle \ldots\langle n 1\rangle}
$$

First evidence for simplicity in scattering amplitudes
\because Amplitudes are more than sums of Feynman diagrams

Singularities of amplitudes

\because Scattering amplitudes of massless particles in $\mathrm{D}=4$

$$
\mathcal{A}=\sum_{j} \int d \mathcal{I}_{j}=\int d \mathcal{I}
$$

* General idea: amplitudes are fixed from their singularities
\% Locality: only $\frac{1}{P^{2}}$ present
* Unitarity: factorization on poles

Integrand is an ideal object to construct/study

Unitarity methods

\because Iterative use of the unitary cut

Generalized unitarity

(Britto, Cachazo, Feng)

* Generate basis of integrals, fixing coefficients from cuts
\% Tremendous success in calculations in 1990-today
 Blackhat: QCD background

BCFW recursion relations

$\%$ Large class of theories at tree-level

* Tree-level unitarity

\therefore Shift momenta + Cauchy formula

$$
\begin{aligned}
& p_{1} \rightarrow p_{1}+z q \\
& p_{2} \rightarrow p_{2}-z q
\end{aligned}
$$

* Very efficient method:

$$
\begin{gathered}
g g \rightarrow 4 g \\
220 \\
3
\end{gathered}
$$

$g g \rightarrow 5 g \quad g g \rightarrow 6 g$ 2485 34300
6

Recursion relations

Hydrogen atom of gauge theories

$\therefore \mathrm{N}=4$ Super Yang-Mills theory in the planar limit

* Great toy model for QCD
- Tree-level amplitudes identical
- Convergent perturbative series, no confinement
- Hidden symmetries in the theory
: Past: new methods for amplitudes originated here

Planar $\mathrm{N}=4$ SYM theory

\% Useful playground for many theoretical ideas

Dual variables

:Generally, each diagram has its own variables

- No global loop momenta
- Each diagram: its own labels

\because Planar limit: dual variables $p_{i}=x_{i+1}-x_{i}$

$$
\begin{aligned}
k_{1}= & \left(x_{1}-x_{2}\right) \quad k_{2}=\left(x_{2}-x_{3}\right) \\
\ell_{1}= & \left(x_{3}-y_{1}\right) \quad \ell_{2}=\left(y_{2}-x_{3}\right) \\
& \text { Global variables }
\end{aligned}
$$

Dual conformal symmetry

\therefore Using these variables: define a single function

$$
\mathcal{M}=\int d^{4} y_{1} \ldots d^{4} y_{L} \mathcal{I}\left(x_{i}, y_{j}\right)
$$ Integrand

Unique in planar $\mathrm{N}=4 \mathrm{SYM}$
\because Tree-level amplitudes + integrand in planar N=4 SYM: Dual conformal symmetry (Drummond, Henn, Smirnov, Sokatchev 2007)
\because Superconformal symmetry + Dual -> Yangian
(Drummond, Henn, Korchemsky, Sokatchev 2008)
(Drummond, Henn, Plefka 2009)

Momentum twistors

\therefore New variables: points in \mathbb{P}^{3}

Dual Space-Time

$$
Z=\binom{\lambda_{a}}{x_{a \dot{a}} \lambda_{a}}
$$

Dual conformal symmetry acts as SL(4) on Z

Momentum twistors

\because Dual conformal invariants: $\langle 1234\rangle=\epsilon_{a b c d} Z_{1}^{a} Z_{2}^{b} Z_{3}^{c} Z_{4}^{d}$
\because Functions of momenta only: projective

box integral$\quad \ell^{2}=\frac{\langle A B 41\rangle}{\langle A B\rangle\langle 41\rangle}$	cross ratio
$\frac{\left\langle A B d^{2} A\right\rangle\left\langle A B d^{2} B\right\rangle\langle 1234\rangle^{2}}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B 41\rangle}$	$\frac{\langle 1234\rangle\langle 4561\rangle}{\langle 1245\rangle\langle 3461\rangle}$

\therefore Infinity twistor $I^{a b}$ breaks dual conformal symmetry

$$
\langle 12\rangle=\langle 12 I\rangle=\epsilon_{a b c d} Z_{1}^{a} Z_{2}^{b} I^{c d}
$$

Manifest Yangian symmetry

* Terms in BCFW recursion: products of on-shell amplitudes

Tension between locality and symmetry

* Each term separately Yangian invariant
\% Iterate until all vertices are 3pt: on-shell diagrams

On-shell diagrams

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)

On-shell diagrams

\therefore Draw arbitrary graph with three point vertices

Products of three point
amplitudes $\left\{\begin{array}{l}P>4 L \quad \text { Extra delta functions } \\ P=4 L \quad \text { Function of external data only } \\ P<4 L\end{array}\right.$ Unfixed parameters (forms)

On-shell diagram expansion

\because Example of 6pt amplitude

* Each diagram: on-shell, gauge invariant function Planar $\mathrm{N}=4$: Yangian invariant [12345]
\because Same pictures: cuts of the loop amplitudes with $\delta\left(P^{2}\right)$

Loop recursion relations

(Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, JT 2010)
\therefore Recursion relations for ℓ-loop integrand

* Example: 4pt 1-loop

5-loop on-shell diagram $=$
1-loop off-shell box

Permutations

\% Represent graphically permutation

* Graph with only 3pt vertices

- Turn right on blue
- Turn left on white

Tree-level amplitudes: list of permutations

Positive Grassmannian

\because Space of n points in k-dim projective space with linear dependencies between consecutive points

$$
\leftrightarrow \quad\left(\begin{array}{lllllll}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & *
\end{array}\right)
$$

$\because(k \times n)$ real matrix with positive main $(k \times k)$ minors

* How to construct this matrix? Using the same diagrams

Amalgamation procedure

\% Construct big positive matrix from small ones

Gluing preserves positivity of minors
\therefore Arbitrary graph: positive matrix

$$
\left(\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right) \quad\left(\begin{array}{llllll}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & *
\end{array}\right)
$$

Connection to amplitudes

* Building positive matrix: face or edge variables

\therefore Same function as a product of 3 pt amplitudes equal to

$$
\Omega=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \delta(C \cdot Z)
$$

Solves for α_{i} in terms of $\lambda_{i}, \widetilde{\lambda}_{i}$ and gives $\delta(P) \delta(Q)$

Logarithmic singularities

\because Amplitude = sum of on-shell diagrams

$$
\Omega \sim \frac{d \alpha}{\alpha} \quad \text { near any pole } \quad \alpha=F\left(\ell_{j}, p_{i}\right)
$$

\because More than single poles: $\frac{d x d y}{x y(x+y)} \xrightarrow{x=0} \frac{d y}{y^{2}}$

* Logarithmic singularities specific for planar $\mathrm{N}=4$ SYM

Generic QFT: $\Omega=F(\alpha) \delta(C \cdot Z)$

* Dlog form: close relation to maximal transcendentality

Geometric interpretation

* On-shell diagrams: regions (cells) in the Grassmannian
* Logarithmic form: "volume" of this region
* Amplitude: sum of on-shell diagrams

Given by BCFW: unitarity
\because Question: Is there a complete geometric definition?

Amplituhedron

(Arkani-Hamed, JT 2013)

Volume of polyhedron

\because Tree-level process: $g g \rightarrow 5 g$ in momentum twistor space
\% Comparison of two calculations of recursion relations

* Even simpler case: polygon

Point inside the polygon

* Consider a point inside a polygon in projective plane

Form with logarithmic singularities on boundaries

$$
C=\left(\begin{array}{lllll}
c_{1} & c_{2} & c_{3} & \ldots & c_{n}
\end{array}\right) \in G_{+}(1, n)
$$

$$
\begin{aligned}
& \Omega\left(Y, Z_{i}\right) \\
& Z=\left(\begin{array}{ccccc}
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
Z_{1} & Z_{2} & Z_{3} & \ldots & Z_{n} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow
\end{array}\right) \in M_{+}(3, n)
\end{aligned}
$$

Triangulation

\% BCFW using on-shell diagrams is a triangulation

$$
C=\left(\begin{array}{llllll}
1 & 0 & 0 & c_{4} & c_{5} & 0
\end{array}\right) \in G_{+}(1,6)
$$

$\Omega=\frac{d c_{4}}{c_{4}} \frac{d c_{5}}{c_{5}}$

Supersymmetry
-> higher dimensional bosonic space

Road to Amplituhedron

Road to Amplituhedron

Road to Amplituhedron

Start:
Point inside a convex polygon

Road to Amplituhedron

Amplituhedron conjecture

$\%$ Volume of $\mathcal{A}_{n, k, \ell}$:

Loop integrand in maximally supersymmetric Yang-Mills theory

$$
\ell=0: \text { Amplitudes of gluons in QCD }
$$

* Consistency check: Locality and Unitarity number of particles
k
helicity information

\% Explicit checks against reference theoretical data

Positivity of amplitudes

(Arkani-Hamed, Hodges, JT, 2014)
\because All terms combined in the amplitude

$$
I=\frac{(\text { Numerator })}{(\text { all poles })}
$$

\% Illegal singularities in denominator
: Numerator fixed by zeroes

- Points outside Amplituhedron
- Canceling higher poles

It represents cod-1 surface outside Amplituhedron

* Amplitude positive (for points inside): volume interpretation

Singularities of

non-planar amplitudes

Non-planar amplitudes in $\mathrm{N}=4 \mathrm{SYM}$

\% No unique integrand, labeling problem

\because No momentum twistors, no known symmetries
\% On-shell diagrams for singularities
No recursion relations

Non-planar on-shell diagrams

\because Non-planar diagrams
(Arkani-Hamed, Bourjaily, Cachazo, Postnikov, JT, 2014)
(Franco, Galloni, Penante, Wen 2015)

Same logarithmic form

$$
C=\left(\begin{array}{ccccccc}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & *
\end{array}\right) \in G(3,6)
$$

$$
\Omega=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \delta(C \cdot Z)
$$

Conjecture: logarithmic singularities of the amplitude

MHV on-shell diagrams

\because Planar sector: all are Parke-Taylor factors

* Non-planar diagrams: holomorphic functions

MHV on-shell diagrams

\because Planar sector: all are Parke-Taylor factors

required by superconformal symmetry
\because Non-planar diagrams: holomorphic functions

$$
\begin{aligned}
= & P T(123456)+P T(124563)+P T(142563)+P T(145623) \\
& +P T(146235)+P T(146253)+P T(162345)
\end{aligned}
$$

Linear combination of Parke-Taylor factors

Dual conformal symmetry

\% Conservative approach: amplitude as a sum of integrals

$$
A=\sum_{i} a_{i} \cdot C_{i} \cdot I_{i} \rightarrow f^{1 a b} f^{b c d} \ldots f^{4 e f}
$$

* Planar limit: integrals I_{i} dual conformal invariant (DCI)
\because How to distinguish: DCI vs non-DCI ? \rightarrow depends on I Can we see it in the structure of singularities?

DCI in action

Unit leading singularities

Chiral vs scalar pentagon

$$
\begin{gathered}
\frac{\left\langle A B d^{2} A\right\rangle\left\langle A B d^{2} B\right\rangle\langle A B 13\rangle\langle 2345\rangle\langle 4512\rangle}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B 45\rangle\langle A B 51\rangle} \\
\frac{\left\langle A B d^{2} A\right\rangle\left\langle A B d^{2} B\right\rangle\langle A B I\rangle}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B 45\rangle\langle A B 51\rangle}
\end{gathered}
$$

For $n>6$ can be cross ratio

On all 4L-cut the residue is 1

DCI in action

No poles at infinity $\quad \ell \rightarrow \infty$

DCI in action

No poles at infinity $\quad \ell \rightarrow \infty$

$\frac{\left\langle A B d^{2} A\right\rangle\left\langle A B d^{2} B\right\rangle\langle 1234\rangle^{2}}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B 41\rangle} \quad$ No pole

$$
\frac{d^{4} \ell}{\ell^{2}\left(\ell+k_{2}\right)^{2}\left(\ell+k_{2}+k_{3}\right)^{2}}
$$

Pole

DCI in action

No poles at infinity $\quad \ell \rightarrow \infty$

$\frac{\left\langle A B d^{2} A\right\rangle\left\langle A B d^{2} B\right\rangle\langle 1234\rangle^{2}}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B 41\rangle} \quad$ No pole

Pole

DCI in action

No poles at infinity $\quad \ell \rightarrow \infty$

$$
\frac{\left\langle A B d^{2} A\right\rangle\left\langle A B d^{2} B\right\rangle\langle 1234\rangle^{2}}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B 41\rangle} \quad \text { No pole }
$$

$$
\begin{array}{cc}
\frac{d \alpha}{\alpha} & \ell+k_{2}=\alpha \lambda_{2} \tilde{\lambda}_{3} \\
\alpha \rightarrow \infty & \ell \rightarrow \infty
\end{array}
$$

Source of poles at infinity

* Planar: triangle sub-diagrams present
\% Non-planar: more types of poles at infinity

Only box subdiagrams Has poles at infinity

Logarithmic singularities vs DCI

\because Multiple poles in the cut structure

$$
\text { Integral } \rightarrow \mathrm{Cut} \rightarrow \mathrm{Cut} \rightarrow \frac{d \alpha}{\alpha^{2}}
$$

\% At low loops saved by DCI

Not at higher loops: new condition

Expansion of the amplitude

\% Expansion for the (MHV) amplitude

$$
A=\sum_{i} a_{i} \cdot C_{i} \cdot I_{i}
$$

Basis of integrals factors Color factors
\% Conjecture: term-by-term

- Logarithmic singularities
- No poles at infinity

- Unit leading singularities

After integration:

- Uniform transcendentality
- No prefactors
- Special cross-ratios...
* Uniform transcendental non-planar integrals studied
(Gehrmann, Henn, Huber 2011, Henn 2014, Henn, Smirnov, Smirnov 2015)

Explicit checks

(Arkani-Hamed, Bourjaily, Cachazo, JT, 2014)
\% Construct basis for 4pt at 2-loop and 3-loop, 5pt 2-loop

Explicit checks

(Arkani-Hamed, Bourjaily, Cachazo, JT, 2014)
$\%$ Construct basis for 4pt at 2-loop and 3-loop, 5pt 2-loop

Coefficients from zeroes

(Bern, Herrmann, Litsey, Stankowicz, JT 2015)

* Go even further in the analogy with planar
\% Use only equations of type

$$
\operatorname{Cut} I=0
$$

- Illegal cuts: non-MHV or spurious cuts
- No target (product of trees) necessary
\% In planar: conjecture, evidence for dual Amplituhedron
\because Conjecture: $\quad A=\sum_{i} a_{i} \cdot C_{i} \cdot I_{i}$
Test for our three cases:

Fixed by vanishing cuts

Coefficients from zeroes

(Bern, Herrmann, Litsey, Stankowicz, JT 2015)

* Go even further in the analogy with planar
\% Use only equations of type

$$
\operatorname{Cut} I=0
$$

- Illegal cuts: non-MHV or spurious cuts
- No target (product of trees) necessary
\% In planar: conjecture, evidence for dual Amplituhedron
\because Conjecture: $\quad A=\sum_{i} a_{i} \cdot C_{i} \cdot I_{i}$
Fixed by vanishing cuts
Test for our three cases:

Example of zero condition

\therefore Expansion of the amplitude

$$
M_{2}=\sum_{\sigma}
$$

Example of zero condition

\therefore Expansion of the amplitude
$\mathrm{Cut} M_{2}=\sum_{\sigma}$

Illegal 5-cut

Fixes relative coefficient

$$
a_{1}=a_{2}
$$

$$
k=1
$$

Non-planar $\mathrm{N}=4$ conclusion

\% Amplitudes (integrands) in complete N=4 SYM:
Analogue of dual conformal symmetry On-shell diagrams / Amplituhedron insights

- No poles at infinity
- Special leading singularities
- Logarithmic singularities
- Zero conditions
* Homogeneous conditions define the amplitude This is begging for geometric/volume interpreation Role of color factors?

Few words about

 supergravity amplitudes
Similarities with Yang-Mills

$\because B C J$ relations

$$
A^{(Y M)}=\sum_{j} \frac{n_{j} c_{j}}{s_{j}} \rightarrow A^{(G R)}=\sum_{j} \frac{n_{j}^{2}}{s_{j}}
$$

\% Squaring has dramatic consequences on singularities

* Loop amplitudes in $\mathrm{N}=8$ SUGRA: poles at infinity

Bad UV behavior of integrals in the amplitude

Gravity on-shell diagrams
 (Herrmann, JT, in progress)

* Well defined on-shell objects
\because No recursion relations, capture singularity structure
\because MHV on-shell diagrams: not holomorphic in $\mathrm{N}=8$

$$
\begin{gathered}
=\frac{1}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 45\rangle\langle 56\rangle\langle 61\rangle} \\
\text { in N}=4 \text { SYM }
\end{gathered}
$$

Gravity on-shell diagrams
 (Herrmann, JT, in progress)

* Well defined on-shell objects
\because No recursion relations, capture singularity structure
\because MHV on-shell diagrams: not holomorphic in $\mathrm{N}=8$

$$
\begin{gathered}
=\frac{\langle 5| 1+6 \mid 2]\langle 2| 3+4 \mid 5][16]^{2}[34]^{2}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 45\rangle\langle 56\rangle\langle 61\rangle\langle 25\rangle^{2}} \\
\text { in } \mathrm{N}=8 \text { SUGRA }
\end{gathered}
$$

Gravity on-shell diagrams

* Default way to calculate: product of 3pt amplitudes
* Amalgamation of 3pt vertices: Grassmannian formula

Does not preserve logarithmic or any other nice form
*Rules to define the form globally needed

$$
\Omega=F(\alpha) \delta(C \cdot Z)
$$

We start to understand how it looks like

Dramatic implications for singularities of gravity amplitudes

Conclusion

Conclusion

\because Planar N=4 SYM: on-shell diagrams, Amplituhedron
\because Non-planar N=4 SYM: same properties seem to hold

Evidence for non-planar geometric construction

Good variables needed
\% Gravity in progress

Thank you for your attention

