Hidden Simplicity in QCD and Gravity Amplitudes

Henrik Johansson
Uppsala U. \& Nordita

March 17, 2016
MHV @ 30
Fermilab

work with Alexander Ochirov [1407.4772, 1507.00332] and Marco Chiodaroli, Murat Gunaydin, Radu Roiban
[1408.0764, 1511.01740, 1512.09130]

Gauge and gravity theories

A story of Hidden Simplicity using basic QFT properties:
Gauge theories: massless spin-1, gauge invariance, color, ...

Gravity theories: massless spin-2, diffeomorphism invariance, ...

\rightarrow observe striking simplicity in general structure of these theories

Amplitudes in a gauge theory

cubic diagram form: $\quad \mathcal{A}^{\text {tree }}=\sum_{i \in \text { cubic }} \frac{n_{i} c_{i}}{D_{i}} \leftarrow$ prolor factors
 $n_{i} \equiv \varepsilon_{\mu}(p) n_{i}^{\mu} \quad$ Consider a gauge transformation $\quad \varepsilon \rightarrow \varepsilon+\alpha p$

$$
n_{i} \rightarrow n_{i}+\Delta_{i} \quad \Delta_{i}=\alpha p_{\mu} n_{i}^{\mu}
$$

Invariance of $\mathcal{A}^{\text {tree }}$ requires that c_{i} are linearly dependent

$$
c_{i}-c_{j}=c_{k} \quad \text { [Jacobi id. or Lie alg. commutation] }
$$

we automatically have: $\quad \sum_{i \in \text { cubic }} \frac{\Delta_{i} c_{i}}{D_{i}}=0$

Build gravity amplitudes

Assume the gauge freedom can be exploited to find numerators

$$
c_{i}-c_{j}=c_{k} \quad \Leftrightarrow \quad n_{i}-n_{j}=n_{k}
$$

dual to the color factors
Then the double copy $\mathcal{M}^{\text {tree }}=\sum_{i \in \text { cubic }} \frac{n_{i} \tilde{n}_{i}}{D_{i}} \rightarrow$ Gravity
describes a spin-2 theory $\quad \varepsilon_{\mu \nu}=\varepsilon_{\mu} \varepsilon_{\nu}$
invariant under (linear) diffeos $\varepsilon_{\mu \nu} \rightarrow \varepsilon_{\mu \nu}+p_{\mu} \xi_{\nu}+\xi_{\mu} p_{\nu}$
$\begin{aligned} & \mathcal{M}^{\text {tree }} \rightarrow \mathcal{M}^{\text {tree }}+\underbrace{\sum_{i \in \mathrm{cubic}} \frac{\Delta_{i} \tilde{n}_{i}}{D_{i}}}_{i \in \text { cubic }}+\sum_{i} \frac{n_{i} \tilde{\Delta}_{i}}{D_{i}} \\ &=0\end{aligned}$

Outline

- Motivation \& review: color-kinematics duality
- Various gravity/gauge theories
- Generalization to QCD tree amplitudes
- New color decomposition
- Primitive amplitude relations for QCD
- Double copies of QCD
- Simple one loop application: 1-loop 4pt
- Conclusion

Color-kinematics duality

Color-kinematics duality for pure (S)YM

YM theories are controlled by a hidden kinematic Lie algebra

- Amplitude expanded in terms of cubic graphs:

$$
\mathcal{A}_{n}^{(L)}=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i} \curvearrowright \text { color factors }}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2} \longleftarrow \text { propagators }}
$$

Color \& kinematic numerators satisfy $\quad n_{i}-n_{j}=n_{k} \quad \Leftrightarrow \quad c_{i}-c_{j}=c_{k}$ same relations:
Bern, Carrasco, HJ

Generalized gauge transformations

In general Feynman diagrams do not obey C-K duality

- Four-gluon vertex absorbed into cubic graphs \rightarrow ambiguity
- Feynman diagrams are gauge-dependent

\rightarrow no reason to expect C-K duality to be present in all gauges
Amplitudes are invariant under "generalized gauge transformations"

$$
n_{i} \rightarrow n_{i}+\Delta_{i} \quad \text { such that } \quad \sum_{i} \frac{c_{i} \Delta_{i}}{\prod_{\alpha} p_{\alpha}^{2}}=0
$$

but not duality: $\quad n_{i}-n_{j} \stackrel{?}{=} n_{k} \quad \Leftrightarrow \quad c_{i}-c_{j}=c_{k}$
Claim: starting from a general gauge there exists transformations Δ_{i} that makes the numerators obey the duality!

Bern, Carrasco, HJ ('08-‘10) shown \rightarrow Lee, Mafra, Schlotterer (‘15) 8

Gauge-invariant relations (pure glue)

$$
A(1,2, \ldots, n-1, n)=A(n, 1,2, \ldots, n-1) \text { cyclicity } \rightarrow(n-1)!\text { basis }
$$

$$
\begin{aligned}
& \sum_{i=1}^{n-1} A(1,2, \ldots, i, n, i+1, \ldots, n-1)=0 \begin{array}{l}
\begin{array}{l}
\mathrm{U}(1) \text { decoupling } \\
\text { Mangano, Parke, Xu }
\end{array} \\
A(1, \beta, 2, \alpha)=(-1)^{|\beta|} \sum_{\sigma \in \alpha 山 \beta^{T}} A(1,2, \sigma)
\end{array} \begin{array}{l}
\text { Kleiss-Kuijf } \\
\text { relations ('89) }
\end{array}
\end{aligned} \text { ' } n-2 \text {)! basis }
$$

$$
\sum_{i=2}^{n-1}\left(\sum_{j=2}^{i} s_{j n}\right) A(1,2, \ldots i, n, i+1, \ldots, n-1)=0
$$

$$
A(1,2, \alpha, 3, \beta)=\sum_{\sigma \in S(\alpha) \amalg \beta} A(1,2,3, \sigma) \prod_{i=1}^{|\alpha|} \frac{\mathcal{F}(3, \sigma, 1 \mid i)}{s_{2, \alpha_{1}, \ldots, \alpha_{i}}}
$$

BCJ relations ('08)
($n-3$)! basis

BCJ rels. proven via string theory by Bjerrum-Bohr, Damgaard, Vanhove; Stieberger ('09) and field theory proofs through BCFW: Feng, Huang, Jia; Chen, Du, Feng ('10-'11)
Relations used in string calcs: Mafra, Stieberger, Schlotterer, et al. ('11-15)
Relations used by Cachazo, He, Yuan to motivate CHY and scattering eqns ('13)

Gravity is a double copy of YM

Gravity amplitudes obtained by replacing color with kinematics

$$
\begin{aligned}
\mathcal{A}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \\
\mathcal{M}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}
\end{aligned}
$$

- The two numerators can differ by a generalized gauge transformation
\rightarrow only one copy needs to satisfy the kinematic algebra
- The two numerators can differ by the external/internal states
\rightarrow graviton, dilaton, axion (B-tensor), matter amplitudes
- The two numerators can belong to different theories
\rightarrow give a host of different gravitational theories

Squaring of YM theory

Gravity processes $=$ squares of gauge theory ones - entire S-matrix
Bern, Carrasco, HJ ('10)

Yang-Mills

E.g. pure Yang-Mills

$$
\mathcal{N}=4 \text { super-YM }
$$

Gravity

$\rightarrow \quad$ Einstein gravity + dilaton + axion
$\rightarrow \quad \mathcal{N}=8$ supergravity

Which "gauge" theories obey C-K duality

- Pure $\mathcal{N}=0,1,2,4$ super-Yang-Mills (any dimension)
- Self-dual Yang-Mills theory O'Connell, Monteiro ('11)

Bern, Carrasco, HJ ('08) Bjerrum-Bohr, Damgaard, Vanhove; Stieberger; Feng et al. Mafra, Schlotterer, etc ('08-'11)

- Heterotic string theory Stieberger, Taylor ('14)
- Yang-Mills + F^{3} theory Broedel, Dixon ('12)
- QCD, super-QCD, higher-dim QCD HJ, Ochirov ('15)
- Generic matter coupled to $\mathcal{N}=0,1,2,4$ super-Yang-Mills $\left\{\begin{array}{l}\text { Chiodaroli, Gunaydin, } \\ \text { Roiban; HJ, Ochirov ('14) }\end{array}\right.$
- Spontaneously broken $\mathcal{N}=\mathbf{0}, \mathbf{2 , 4} \mathbf{S Y M}$ Chiodaroli, Gunaydin, HJ, Roiban ('15)
- Yang-Mills + scalar ϕ^{3} theory Chiodaroli, Gunaydin, HJ, Roiban ('14)
- Bi-adjoint scalar ϕ^{3} theory $\left\{\begin{array}{l}\text { Bern, de Freitas, Wong ('99), Bern, Dennen, Huang; } \\ \text { Du, Feng, Fu; Bjerrum-Bohr, Damgaard, Monteiro, O'Connell }\end{array}\right.$
- NLSM/Chiral Lagrangian Chen, Du ('13)
- $D=3$ Bagger-Lambert-Gustavsson theory (Chern-Simons-matter)

Bargheer, He, McLoughlin; Huang, HJ, Lee ('12-'13)

Which "gravity" theories are double copies

- Pure $\mathcal{N}=4,5,6,8$ supergravity ($2<\mathrm{D}<11$) KLT ('86), Bern, Carrasco, HJ ('08-'10)
- Einstein gravity and pure $\mathcal{N}=1,2,3$ supergravity HJ , Ochirov ('14)
- Self-dual gravity 0'Connell, Monteiro ('11)
- Closed string theories Mafra, Schlotterer, Stieberger ('11); Stieberger, Taylor ('14)
- Einstein $+R^{3}$ theory Broedel, Dixon ('12)
- Abelian matter coupled to supergravity $\left\{\begin{array}{l}\text { Carrasco, Chiodaroli, Gunaydin, Roiban ('12) } \\ \mathrm{HJ}, \mathrm{Ochirov} \text { ('14-'15) }\end{array}\right.$
- Magical sugra, homogeneous sugra Chiodaroli, Gunaydin, HJ, Roiban ('15)
- SYM coupled to supergravity Chiodaroli, Gunaydin, HJ, Roiban ('14)
- Spontaneously broken YM-Einstein gravity Chiodaroli, Gunaydin, HJ, Roiban ('15)
- $D=3$ supergravity (BLG Chern-Simons-matter theory) ${ }^{2}\left\{\begin{array}{l}\text { Bargheer, He, McLoughlin; } \\ \text { Huang, HJ, Lee ('12 '13) }\end{array}\right.$
- Born-Infeld, DBI, Galileon theories (CHY form) Cachazo, He, Yuan ('14)

Color-Kinematics Duality for QCD

Defining QCD

'QCD' is taken to be the following theory:
$\mathrm{SU}\left(N_{c}\right) \mathrm{YM}+N_{f}$ massive quarks

In fact, everything I say will also apply to:

$$
G_{c} \mathrm{YM}+N_{f} \text { massive complex-rep. fermions } \underset{/ \text { scalars }}{ }
$$

in D dimensions or SUSY extended SQCD

Only use two Lie-algebra properties

Jacobi Id.
 $\tilde{f}^{d a c} \tilde{f}^{c b e}-\tilde{f}^{d b c} \tilde{f}^{c a e}=\tilde{f}^{a b c} \tilde{f}^{d c e}$

Commutation Id.

$$
\text { Duality: } \quad n_{i}-n_{j}=n_{k} \quad \Leftrightarrow \quad c_{i}-c_{j}=c_{k}
$$

Amplitude presentation for QCD

QCD amplitude with k quark lines of distinct flavor:

$$
\mathcal{A}_{n, k}^{(L)}=\sum_{i} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{D_{i}}
$$

sum is over all cubic gluon-quark graphs with vertices Color factors c_{i} are built out of $f^{a b c}, T_{i \bar{\jmath}}^{a}$

Number of cubic tree-level graphs

$k \backslash n$	3	4	5	6	7	8
0	1	3	15	105	945	10395
1	1	3	15	105	945	10395
2	-	1	5	35	315	3465
3	-	-	-	7	63	693
4	-	-	-	-	-	99

$$
\nu(n, k)=\frac{(2 n-5)!!}{(2 k-1)!!} \text { for } 2 k \leq n
$$

$n=5 k=2$ example

Look at 3 Feynman diagrams out of 5 in total:

Not gauge invariant, but satisfy color-kinematics duality

$$
c_{1}-c_{2}=-c_{5} \quad \Leftrightarrow \quad n_{1}-n_{2}=-n_{5}
$$

Color decomposition

$\mathrm{SU}\left(N_{c}\right)$ basis decomposition

Mangano, Parke, Xu;
Berends, Giele;
Mangano; Kosower + more
only gluons: $\quad \mathcal{A}_{n, 0}^{\text {tree }}=\sum_{\sigma \in S_{n-1}(\{2, \ldots, n\})} \operatorname{Tr}\left(T^{a_{1}} T^{a_{\sigma(2)}} \ldots T^{a_{\sigma(n)}}\right) A(1, \sigma(2), \ldots, \sigma(n))$
with quarks more complicated

$$
\sim \frac{1}{N_{c}^{p}}\left(T^{a_{2 k+1}} \ldots T^{a_{l_{1}}}\right)_{i_{1} \bar{\alpha}_{1}}\left(T^{a_{l_{1}+1}} \ldots T^{a_{l_{2}}}\right)_{i_{2} \bar{\alpha}_{2}} \ldots\left(T^{a_{l_{k-1}+1}} \ldots T^{a_{n}}\right)_{i_{k} \bar{\alpha}_{k}}
$$

e.g. $k=1$

$$
\mathcal{A}_{n, 1}^{\text {tree }}=\sum_{\sigma \in S_{n-2}(\{3, \ldots, n\})}\left(T^{a_{\sigma(3)}} \ldots T^{a_{\sigma(n)}}\right)_{\bar{\jmath}_{2} i_{1}} A(\underline{1}, \overline{2}, \sigma(3), \ldots, \sigma(n))
$$

Del Duca, Dixon, Maltoni (DDM) basis

$$
\mathcal{A}_{n, 0}^{\text {tree }}=\sum_{\sigma \in S_{n-2}(\{3, \ldots, n\})} \tilde{f}^{a_{2} a_{\sigma(3)} b_{1}} \tilde{f}^{b_{1} a_{\sigma(4)} b_{2}} \ldots \tilde{f}^{b_{n-3} a_{\sigma(n)} a_{1}} A(1,2, \sigma(3), \ldots, \sigma(n))
$$

Properties: valid for any G, gives small ($n-2$)! basis

Dyck words

Basis of planar (color-ordered) tree amplitudes:

$$
\text { only quarks } \quad\left\{A(\underline{1}, \overline{2}, \sigma) \mid \sigma \in \mathrm{Dyck}_{k-1}\right\} \quad \text { T. Melia }
$$

six-point example:

$$
\begin{aligned}
& \mathrm{XYXY} \Rightarrow(\underline{3}, \overline{4}, \underline{5}, \overline{6}),(\underline{5}, \overline{6}, \underline{3}, \overline{4}) \Leftrightarrow\{34\}\{56\},\{56\}\{34\}, \\
& \mathrm{XXYY} \Rightarrow(\underline{3}, \underline{5}, \overline{6}, \overline{4}),(\underline{5}, \underline{3}, \overline{4}, \overline{6}) \Leftrightarrow\{3\{56\} 4\},\{5\{34\} 6\} .
\end{aligned}
$$

basis: $\quad A(\underline{1}, \overline{2}, \underline{3}, \overline{4}, \underline{5}, \overline{6}), A(\underline{1}, \overline{2}, \underline{5}, \overline{6}, \underline{3}, \overline{4}), A(\underline{1}, \overline{2}, \underline{3}, \underline{5}, \overline{6}, \overline{4})$ and $A(\underline{1}, \overline{2}, \underline{5}, \underline{3}, \overline{4}, \overline{6})$

Color

coefficients:
HJ, Ochirov

Melia basis

Basis of planar (color-ordered) tree amplitudes:

gluons \& quarks $\left\{A(\underline{1}, \overline{2}, \sigma) \mid \sigma \in\right.$ Dyck $\left._{k-1} \times\{\text { gluon insertions }\}_{n-2 k}\right\}$
size of basis:
T. Melia

$$
\varkappa(n, k)=\underbrace{\frac{\overbrace{(2 k-2)!}^{k!(k-1)!}}{k(k-1)!} \times \underbrace{(2 k-1)(2 k) \ldots(n-2)}_{\text {insertions of }(n-2 k) \text { gluons }}=\frac{(n-2)!}{k!}}_{\text {dressed quark brackets }}
$$

Color decomposition, any G_{c}, k, any rep.

$k \backslash n$	3	4	5	6	7	8
0	1	2	6	24	120	720
1	1	2	6	24	120	720
2	-	1	3	12	60	360
3	-	-	-	4	20	120
4	-	-	-	-	-	30

$$
\mathcal{A}_{n, k}^{\text {tree }}=\sum_{\sigma \in \text { Melia basis }}^{\varkappa(n, k)} C(\underline{1}, \overline{2}, \sigma) A(\underline{1}, \overline{2}, \sigma) \quad \text { HJ, Ochirov }
$$

Tensor representations

Tensor l copies of the gauge group Lie algebra:

$$
\Xi_{l}^{a}=\sum_{s=1}^{l} \underbrace{1 \otimes \cdots \otimes 1 \otimes \overbrace{T^{a} \otimes 1 \otimes \cdots \otimes 1 \otimes \overline{1}}^{s}}_{l}
$$

The Ξ_{l}^{a} are Lie algebra generators

$$
\left[\Xi_{l}^{a}, \Xi_{l}^{b}\right]=\tilde{f}^{a b c} \Xi_{l}^{c}
$$

Color coefficients

Color coefficients are given by ‘sandwich' formulas:
color wave function

$$
C(\underline{1}, \overline{2}, \sigma)=(-1)^{k-1}\{2|\sigma| 1\} \left\lvert\, \begin{array}{ll}
q & \begin{array}{ll}
& \left\{q \mid T^{b} \otimes \Xi_{l-1}^{b}\right. \\
\bar{q} & \rightarrow \mid q\} \\
g & \rightarrow \Xi_{l}^{a_{g}}
\end{array}
\end{array}\right.
$$

HJ, Ochirov (proof by Melia)

For example, consider:

$$
\begin{aligned}
C_{\underline{1} \overline{2} \underline{3} \overline{4} \underline{5} \overline{6}} & =\left\{2\left|\left\{3\left|T^{a} \otimes \Xi_{1}^{a}\right| 4\right\}\left\{5\left|T^{b} \otimes \Xi_{1}^{b}\right| 6\right\}\right| 1\right\}=\left\{2\left|\left\{3\left|T^{a} \otimes \bar{T}^{a}\right| 4\right\}\left\{5\left|T^{b} \otimes \bar{T}^{b}\right| 6\right\}\right| 1\right\} \\
& =\left\{2\left|\bar{T}^{a} \bar{T}^{b}\right| 1\right\}\left\{3\left|T^{a}\right| 4\right\}\left\{5\left|T^{b}\right| 6\right\}=\left(T^{b} T^{a}\right)_{i_{1} \overline{1}_{2}} T_{i_{3} \bar{\tau}_{4}}^{a} T_{i_{5} \bar{\tau}_{6}}^{b},
\end{aligned}
$$

Color coefficient diagrams

Consider a high-multiplicity example:

$$
A(\underline{1}, \overline{2}, 13, \underline{3}, \underline{5}, \overline{6}, \overline{4}, \underline{7}, \underline{9}, 14, \underline{11}, \overline{12}, \overline{10}, \overline{8})
$$

bra-(c)-ket structure

$$
\{213\{3\{56\} 4\}\{7\{914\{1112\} 10\} 8\} 1\}
$$

$$
\begin{aligned}
C_{\underline{1}, \overline{2}, 13,3,5,5, \overline{6}, \overline{,}, 7,9,14,11, \overline{12}, \overline{10}, \overline{8}}=-\left\{2 \mid \Xi_{1}^{a_{13}}\left\{3 \mid T^{b} \otimes\right.\right. & \left.\Xi_{1}^{b}\left\{5\left|T^{c} \otimes \Xi_{2}^{c}\right| 6\right\} \mid 4\right\} \\
& \left.\times\left\{7\left|T^{d} \otimes \Xi_{1}^{d}\left\{9\left|\left(T^{e} \otimes \Xi_{2}^{e}\right) \Xi_{3}^{a_{14}}\left\{11\left|T^{f} \otimes \Xi_{3}^{f}\right| 12\right\}\right| 10\right\}\right| 8\right\} \mid 1\right\}
\end{aligned}
$$

Amplitude relations: example

$3, a \quad 4, b$

$$
\begin{aligned}
& 4, b \quad 3, a
\end{aligned}
$$

commutation rel. holds: $\quad c_{1}-c_{2}=c_{3} \quad n_{1}-n_{2}=n_{3}$
$\mathcal{A}_{4,1}^{\text {tree }}=\sum_{i=1}^{3} \frac{c_{i} n_{i}}{D_{i}}=\left\{c_{1}\left(\frac{n_{1}}{D_{1}}+\frac{n_{3}}{D_{3}}\right)+c_{2}\left(\frac{n_{2}}{D_{2}}-\frac{n_{3}}{D_{3}}\right)\right\} \equiv c_{2} A_{\underline{1} \overline{2} 34}+c_{1} A_{\underline{1} \overline{2} 43}$
Gaussian elimination of $n_{1} \quad A_{\underline{1} \overline{2} 34}=\underbrace{\left(\frac{1}{D_{2}}+\frac{1}{D_{3}}-\frac{D_{1}}{\left(D_{1}+D_{3}\right) D_{3}}\right.}_{=0}) n_{2}-\frac{D_{1}}{D_{1}+D_{3}} A_{\underline{1} 243}$.
\rightarrow BCJ amplitude rel. $\quad\left(s_{14}-m^{2}\right) A_{\underline{1} \overline{2} 34}=\left(s_{13}-m^{2}\right) A_{\underline{1} 243}$

Amplitude relations \& basis

BCJ relations for pure-gluon amplitudes:

$$
\sum_{i=2}^{n-1}\left(\sum_{j=2}^{i} s_{j n}\right) A(1,2, \ldots i, n, i+1, \ldots, n-1)=0
$$

BCJ relations for quark-gluon QCD amplitudes:
HJ, Ochirov

$$
\sum_{i=2}^{n-1}\left(\sum_{j=2}^{i} s_{j n}-m_{j}^{2}\right) A(1,2, \ldots i, n i+1, \ldots, n-1)=0
$$

proof by: de la Cruz, Kniss, Weinzierl

$$
\begin{array}{ll}
(n-3)! & \text { for } k=0,1 \\
(n-3)!(2 k-2) / k! & \text { for } 2<2 k \leq n
\end{array}
$$

Basis:

$k \backslash n$	3	4	5	6	7	8
0	1	1	2	6	24	120
1	1	1	2	6	24	120
2	-	1	2	6	24	120
3	-	-	-	4	16	80
4	-	-	-	-	-	30

Gravity double copy

Gravity amplitudes from double copy

Four-photon amplitude in GR (distinguishable matter):

$$
A\left(1_{\gamma}^{-}, 2_{\gamma}^{+}, 3_{\gamma^{\prime}}^{-}, 4_{\gamma^{\prime}}^{+}\right)=\frac{n_{s}^{2}}{s}=\frac{\langle 13\rangle^{2}[24]^{2}}{s}
$$

Four-scalar amplitude in GR (distinguishable matter):

indistinguishable matter:
$A\left(1_{\phi}^{-+}, 2_{\phi}^{+-}, 3_{\phi}^{-+}, 4_{\phi}^{+-}\right)=\frac{n_{s} \bar{n}_{s}}{s}+\frac{n_{s} \bar{n}_{s}}{t}=\frac{u^{2}}{s}+\frac{u^{2}}{t}$

Gravity Theories

$\mathrm{QCD} \otimes \mathrm{QCD}=\mathrm{GR}+$ matter

matter that only interacts gravitationally
HJ, Ochirov (' 14 - '15)

E.g. Maxwell-Einstein theory

Used recently to construct magical and homogeneous $\mathrm{N}=2$ sugras

$$
\begin{array}{r}
(\mathcal{N}=2 \mathrm{SQCD}) \otimes(D=7,8,10,14 \mathrm{QCD}) \\
=\text { Magical } \mathcal{N}=2 \text { Supergravity } \\
(\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O} \text { type })
\end{array}
$$

Chiodaroli, Gunaydin, HJ, Roiban ('15)

YM-Einstein theory

Chiodaroli, Gunaydin, HJ, Roiban (‘14)

$$
\mathrm{GR}+\mathrm{YM}=\mathrm{YM} \otimes\left(\mathrm{YM}+\phi^{3}\right)
$$

GR+YM amplitudes are "heterotic" double copies

Gives a construction of the simplest type of gauged supergravities, other constructions should exists for other gaugings.

Simple 1-loop examples

One-loop calculations

diagrams:

$n_{\text {snail }}$

vanish after integration
kinematic algebra: $\quad n_{\text {tri }}(1,2,3,4, \ell)=n_{\text {box }}([1,2], 3,4, \ell)$,

$$
\begin{aligned}
n_{\text {bub }}(1,2,3,4, \ell) & =n_{\text {box }}([1,2],[3,4], \ell), \\
n_{\text {snail }}(1,2,3,4, \ell) & =n_{\text {box }}([[1,2], 3], 4, \ell), \\
n_{\text {tadpole }}(1,2,3,4, \ell) & =n_{\text {box }}([[1,2],[3,4]], \ell), \\
n_{\text {xtadpole }}(1,2,3,4, \ell) & =n_{\text {box }}([[[1,2], 3], 4], \ell) .
\end{aligned}
$$

Unitarity cuts

Parameters in ansatz fixed by unitarity cuts (unitarity method)

Bern, Dixon,
Dunbar, Kosower

N=2 SQCD: Carrasco, Chiodaroli, Gunaydin, Roiban; Nohle; Ochirov, Tourkine, HJ, Ochirov

$$
\begin{aligned}
& n_{\text {box }}^{\mathcal{N}=2, \text { fund }}=\left(\kappa_{12}+\kappa_{34}\right) \frac{\left(s-\ell_{s}\right)^{2}}{2 s^{2}}+\left(\kappa_{23}+\kappa_{14}\right) \frac{\ell_{t}^{2}}{2 t^{2}}+\left(\kappa_{13}+\kappa_{24}\right) \frac{s t+\left(s+\ell_{u}\right)^{2}}{2 u^{2}} \\
&-2 i \epsilon(1,2,3, \ell) \frac{\kappa_{13}-\kappa_{24}}{u^{2}}+\mu^{2}\left(\frac{\kappa_{12}+\kappa_{34}}{s}+\frac{\kappa_{23}+\kappa_{14}}{t}+\frac{\kappa_{13}+\kappa_{24}}{u}\right) \\
& \mathbf{N}=1 \text { SQCD: }
\end{aligned}
$$

HJ, Ochirov

$$
\begin{aligned}
n_{\text {box }}^{\mathcal{N}=1, \text { odd }}= & \left(\kappa_{12}-\kappa_{34}\right) \frac{\left(\ell_{s}-s\right)^{3}}{2 s^{3}}+\left(\kappa_{23}-\kappa_{14}\right) \frac{\ell_{t}^{3}}{2 t^{3}}+\left(\kappa_{13}-\kappa_{24}\right) \frac{1}{2}\left(\frac{\ell_{u}^{3}}{u^{3}}+\frac{3 s \ell_{u}^{2}}{u^{3}}-\frac{3 s \ell_{u}}{u^{2}}+\frac{s}{u}\right) \\
& -2 i \epsilon(1,2,3, \ell)\left(\kappa_{13}+\kappa_{24}\right) \frac{2 \ell_{u}-u}{u^{3}}-a \mu^{2}\left(\kappa_{13}-\kappa_{24}\right) \frac{s-t}{u^{2}}
\end{aligned}
$$

YM + scalar: Nohle; HJ, Ochirov
QCD: HJ, Ochirov

Using the QCD numerators to get GR

Pure Einstein gravity can be obtained from the QCD numerators:

$$
\mathcal{M}_{4}^{(1)}=\sum_{\mathcal{S}_{4}} \sum_{i=\{B, t, b\}} \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{1}{S_{i}} \frac{n_{i}^{V} n_{i} V^{\prime}-\bar{n}_{i}^{m} n_{i}^{m^{\prime}}-n_{i}^{m} \bar{n}_{i}^{m^{\prime}}}{D_{i}}
$$

The YM square contains dilaton \& axion, which has to be subtracted out

...and similarly for triangle and bubble

Gives correct pure GR amplitude (cf. Dunbar \& Norridge)

Summary

- Color-kinematics duality implies kinematic Lie algebra relations satisfied by the numerators of gauge theory amplitudes
- Generalized color-kinematics duality to QCD tree amplitudes
- New color decomposition of QCD tree amplitudes
- BCJ amplitude relations between primitives of QCD
- Checks: Explicitly up to 8pts tree level, proof color decompositon (Melia) proof BCJ relations (Weinzierl, et al.)
- Constructed one-loop 4pt amplitude in $N=1,2$ SQCD and QCD such that the duality is manifest.
- Useful for construction of QCD loop amplitudes as well as for pure Einstein and gravity + matter amplitudes

