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Amplitudes as building blocks

MHV amplitudes, for other helicity amplitudes

I Saw the Parke-Taylor formula in Witten’s 2003 paper.
I MHV diagrams build tree amplitudes on-shell [Cachazo, Svrcek, Witten]

MHV MHV

MHV

Tree amplitudes, for loop amplitudes

Cuts beyond one loop: what are we computing?

What are cuts?

What are generalized cuts?
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Amplitudes as building blocks

MHV amplitudes, for other helicity amplitudes

Tree amplitudes, for loop amplitudes

I Unitarity method: on-shell ”cut” techniques with master integarals
[Bern, Dixon, Kosower; with Dunbar, Weinzierl, Del Duca, ...]

I Updated with MHV diagrams [Cachazo, Svrcek, Witten; Brandhuber, Spence, Travaglini]

I Twistor geometry led to differential operators for NMHV in N = 4
SYM; complex cuts for NNMHV [RB, Cachazo, Feng]

I Tree-level recursion observed as a byproduct [Roiban, Spradlin, Volovich; RB, Cachazo,

Feng]

I Extended spinor integration and cuts for more realistic theories
[collaborations with Anastasiou, Buchbinder, Cachazo, Feng, Kunszt, Mastrolia, Mirabella, Ochirov, Yang]
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Cuts beyond one loop: what are we computing?

What are cuts?

What are generalized cuts?
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Cuts and Hopf algebra of Feynman integrals

Cutkosky: Cut diagrams compute discontinuities across branch cuts.

We conjecture:

For integrals in the class of multiple polylogarithms (MPL),
the discontinuities described by cuts are naturally found within the
Hopf algebra of MPL.

There is a diagrammatic Hopf algebra that
I involves cut diagrams, and
I corresponds to the Hopf algebra of MPL.

[Based on: 1401.3546 with Abreu, Duhr, Gardi, and work in preparation ; 1504.00206 with Abreu

and Grönqvist ]
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Cuts as discontinuities

From the Largest Time Equation [Veltman]:

F + F∗ = −
∑
s

Cuts F ,

Hence:

Discs F = −Cuts F .

Valid in a particular kinematic region: cut invariant s positive, others negative.

Generalize to:

Cuts1,...,sk F = (−1)k Discs1,...,sk F .

Ruth Britto Cuts and discontinuities



Multiple unitarity cuts

Cut propagators: put them on shell.

Choose propagators corresponding to a sequence of momentum channels.

Cuts1,...,sk F

With real kinematics.

Defined by: cut propagators + consistent energy flow + corresponding kinematic
region

Multiple cuts are taken simultaneously.

+ + + +
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Multiple polylogarithms (MPL)

A large class of iterated integrals are described by multiple polylogarithms:

I (a0; a1, . . . , an; an+1) ≡
∫ an+1

a0

dt

t − an
I (a0; a1, . . . , an−1; t)

Examples:

I (0; 0; z) = log z, I (0; a; z) = log
(

1−
z

a

)
I (0; ~an; z) =

1

n!
logn

(
1−

z

a

)
, I (0;~0n−1, a; z) = −Lin

( z
a

)
Harmonic polylog if all ai ∈ {−1, 0, 1}.

n is the transcendental weight.

Observation: most known Feynman integrals can be written in terms of classical and
harmonic polylogs.
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Hopf algebra of MPL

Goncharov’s coproduct formula for MPL (modulo π):

∆I (a0; a1, . . . , an; an+1)

=
∑

0=i0<···<ik<ik+1=n+1

I (a0; ai1 , . . . , aik ; an+1)⊗
k∏

p=0

I (aip ; aip+1, . . . , aip+1−1; aip+1
)

Examples:

∆(log z) = 1⊗ log z + log z ⊗ 1

∆(log x log y) = 1⊗ (log x log y) + log x ⊗ log y + log y ⊗ log x + (log x log y)⊗ 1

∆(Lin(z)) = 1⊗ Lin(z) + Lin(z)⊗ 1 +

n−1∑
k=1

Lin−k (z)⊗
logk z

k!

Hopf algebra includes compatible counit and antipode.
Graded by transcendental weight.

Ruth Britto Cuts and discontinuities



Symbols of MPL

The “symbol” S is essentially the maximal iteration.

S(F ) ≡ ∆1,...,1(F ) ∈ H1 ⊗ . . .⊗H1 .

S
(

1

n!
logn z

)
= z ⊗ · · · ⊗ z︸ ︷︷ ︸

n times

S(Lin(z)) = −(1− z)⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
(n−1) times

Functions are all weight 1, i.e. log.

(The symbol was introduced to us for remainder functions [Goncharov, Spradlin, Vergu,

Volovich] and applied widely since then.)

Ruth Britto Cuts and discontinuities



Coproducts of Feynman integrals

Observation: without internal masses, coproduct can be written such that

∆1,n−1F =
∑
i

log(−si )⊗ fsi

first entries are Mandelstam invariants,

and each second entry fsi is the discontinuity of F in the channel si .

[Gaiotto, Maldacena, Sever, Viera]

Thus: the coproduct captures standard unitarity cuts.

What about generalized cuts?
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Coproduct entries

If

∆1,1,...,1︸ ︷︷ ︸
k times

,n−kF =
∑

{x1,...,xk}
log x1 ⊗ · · · ⊗ log xk ⊗ gx1,...,xk ,

then

δx1,...,xkF
∼= gx1,...,xk .

More precisely: match branch points. The “∼=” means modulo π.

Motivated by coproduct identity : ∆ Disc = (Disc⊗1) ∆ [Duhr]

and first-entry condition.
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Coproduct and discontinuities for Feynman integrals

Discs1 F = (−2πi) δs1F .

Discs1,...,sk F =
∑

x1,...,xk

±(2πi)k δx1,...,xkF .

Assume prior knowledge of alphabet (e.g. from cuts)

Underlying claim: kinematics put us on the branch cuts, so that it is
correct to use our definition of Disc.
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Basic example: triangle

k

p2 − k

p3 + k

p3

p1

p2

T = − i

p2
1

2

z − z̄

(
Li2(z)− Li2(z̄) +

1

2
log(zz̄) log

(
1− z

1− z̄

))
≡ − i

p2
1

2

z − z̄
P2

where

zz̄ =
p2

2

p2
1

, (1− z)(1− z̄) =
p2

3

p2
1
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Coproduct of the triangle

∆P2 = P2 ⊗ 1 + 1⊗ P2 +
1

2
log(zz̄)⊗ log

1− z

1− z̄
+

1

2
log[(1− z)(1− z̄)]⊗ log

z̄

z

= P2 ⊗ 1 + 1⊗ P2 +
1

2
log
(
−p2

2

)
⊗ log

1− z

1− z̄
+

1

2
log
(
−p2

3

)
⊗ log

z̄

z

+
1

2
log(−p2

1)⊗ log
1− 1/z̄

1− 1/z

Alphabet: {z, z̄, 1− z, 1− z̄}.
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First cut of the triangle

Cut in the p2
2 channel.

k

p2 − k

p3 + k
p1

p2

p3

Kinematic region: p2
2 > 0; p2

1 , p
2
3 < 0.

Cutp2
2
T =

2π

p2
1(z − z̄)

log
1− z

1− z̄

= −Discp2
2
T

δp2
2
P2 =

1

2
log

1− z

1− z̄

Discp2
2
T = (−2πi)δp2

2
T .
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Second cut of the triangle

p1

p2

p3 k

p2 − k

p3 + k

Cutp2
3 ,p

2
2
T =

4π2i

p2
1(z − z̄)

Kinematic region: p2
3 , p

2
2 > 0; p2

1 < 0
Equivalently: z̄ < 0, z > 1.

Now we have to match the alphabet with Mandelstam invariants:

Discp2
2 ,p

2
3
T = Cutp2

2 ,p
2
3
T .

Discp2
2 ,p

2
3
T = 4π2 δp2

2 ,1−zT
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Reconstruction: from cut to symbol

Integrability condition on symbols: for each k,∑
i1,...,in

ci1,...,in d log aik ∧ d log aik+1

[
ai1 ⊗ · · · ⊗ aik−1

⊗ aik+2
⊗ · · · ⊗ ain

]
= 0 .

Apparently related to exchanging order of cuts.

Combine with first entry condition (=Mandelstam invariant) and known cut(s).

Reconstruction of the symbol of the 2-loop 3-point ladder is unique from any of its
single or double cuts. Various finite 1-loop examples also work.
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Reconstruction: from symbol to full function

In general, integrating a symbol is an unsolved problem.

But in many cases we have enough information to constrain the function
uniquely & algebraically.

In the same example, from the p2
2 cut of triangle, given that:

S(T ) =
1

2
zz̄ ⊗

1− z

1− z̄
+

1

2
(1− z)(1− z̄)⊗

z̄

z

and antisymmetry under z ↔ z̄, the solution

T = P2(z)

=

(
Li2(z)− Li2(z̄) +

1

2
log(zz̄) log

(
1− z

1− z̄

))
is unique.

Ladder & massive triangles are easy too. At most, fix a single free constant by
numerical evaluation at a point.
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Generalizations for internal masses

[Abreu, RB, Grönqvist]

First entries adjusted for thresholds

S
( )

= 1
ε

m2−p2

m2 + m2 ⊗
m2
(
m2−p2

)
p2 +

(
m2 − p2

)
⊗ p2

(m2−p2)2 +O (ε) .

Include cuts of massive propagators
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Coproducts of diagrams

[in preparation with Abreu, Duhr, Gardi]

Second entries are discontinuities; first entries have discontinuities.

Motivated by the identity
∆ Disc = (Disc⊗1) ∆.

The companion relation
∆ ∂ = (1⊗ ∂) ∆

produces differential equations.
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Diagram operations: pinch ⊗ cut

Pinch and cut complementary subsets of edges:
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Diagram operations: pinch ⊗ cut

Pinch and cut complementary subsets of edges:
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Diagram operations: pinch ⊗ cut

Pinch and cut complementary subsets of edges:

Can also start with a cut diagram.

Operation is purely combinatorial and is the coproduct of a full Hopf algebra with
product, unit, counit, antipode. (Incidence Hopf Algebra.)
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2 equivalent Hopf algebras

The combinatorial algebra agrees with the Hopf algebra on the MPL of evaluated
diagrams!

But we have to make adjustments:

Integrals live in different dimensions. With n propagators, D = n− 2ε for n even;
D = n + 1− 2ε for n odd. Conjecture: these integrals form a basis of 1-loop
integrals.

E.g. box and triangle in D = 4− 2ε, bubble and tadpole in D = 2− 2ε.

Need to insert extra terms:

Isomorphic to the more basic construction. (For any value of 1/2.)
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What are these generalized cuts?

Generalized cuts are sensitive to kinematic regions. Our graphical relations make no
reference to kinematics, and we need complex cuts like 4-cuts of boxes. Here, we
define cuts as residues.

At least at 1-loop, differences are proportional to iπ, which drops out of the coproduct.

The residues can be written beautifully in terms of determinants.
(Gram and modified Cayley)

Not very clear how to generalize to higher loops, but the nature of coproducts
suggests it should be possible. [related work: Brown; Bloch and Kreimer]
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Generalized cuts as residues and determinants

1-loop cuts defined as residues:

CS [In] = (2π)b|S|/2c e
γE ε

iπ
D
2

∫
ΓS

dDk
∏
j 6∈S

1

(k − qj )2 −m2
j + i0

mod iπ ,

S is the set of cut propagators

Parametrize loop momentum in selected coordinates

Contour encircles poles of cut propagators

Result:

CS [In] =

(
−

1

2

)s (2π)bs/2c eγE ε
√
YS

(
YS

GS

)(D−s)/2 ∫ dΩD−s+1

iπD/2

∏
j /∈S

1

(k − qj )2 −m2
j


S

where

GS = det
(
qi · qj

)
i,j∈S

YS = det

(
1

2
(m2

i + m2
j + (qi − qj )

2)

)
i,j∈S

Ruth Britto Cuts and discontinuities



Maximal and next-to-maximal cuts

Some special cases:

C2k [J2k ] = 21−k−2ε Γ(1− ε)
Γ(1− 2ε)

eγE ε
√
Y2k

(
Y2k

G2k

)−ε
C2k+1[J2k+1] = −2−k eγE ε

Γ(1− ε)
√

G2k+1

(
Y2k+1

G2k+1

)−ε
.

C2k−1[J2k ] = −
Γ(1− 2ε)2

Γ(1− ε)3

2−k+4εeγE ε
√
Y2k

(
Y2k−1

G2k−1

)−ε
2F1

(
1

2
,−ε; 1− ε;

G2k Y2k−1

Y2k G2k−1

)
.

Landau conditions are expressed in polytope geometry: these determinants are
volumes of simplices determined by the external momenta.
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Evidence for the graphical conjecture

all tadpoles and bubbles

triangles and boxes with several combinations of internal and external masses

consistency checks for more complicated boxes, 0m pentagon, 0m hexagon

Checked to several orders in ε.
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Summary

The Parke-Taylor formula and helicity decompositions led to novel amplitude
constructions.

On-shell methods have been used to compute Feynman integrals and explain
simplicity of amplitudes. For loops, this means cut diagrams.

Cut diagrams are discontinuities of loop amplitudes.

Hopf algebra coproduct identifies generalized discontinuities!

Use Hopf algebra to interpret cut diagrams and reconstruct multi-loop integrals.

The Hopf algebra can also be written diagrammatically.

Similar relations at the amplitude level?
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extra slides
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Cutting Rules

Traditional [Veltman]:

for massless scalar theory.
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Cutting Rules

Generalized:

Colors are ci = 0, 1 for each cut i : we overlay consistent energy flow across
each cut.

We allow repeated cuts of same propagator or same loop.

Ruth Britto Cuts and discontinuities



Cutting Rules

Example:
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Discontinuities across branch cuts

Discx [F (x ± i0)] = F (x ± i0)− F (x ∓ i0),

Example:
Discx log(x + i0) = 2πi θ(−x).

Sequential:

Discx1,...,xk F ≡ Discxk
(
Discx1,...,xk−1 F

)
.
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