

a mostly positive take, with only two negatives **30 years of MHV**

Real and the formation IAS

Fermilab 18 Mar 2016

(some words of gratitude)

Not just an inspiration

Critical and USED

- 1. Testbed for ideas.
- 3. *4D satisfaction is necessary for D-dim claims.* In combination with unitarity and (projections from) Nair superspace, MHV critical to how I probe all 4-D data from gauge theories I care about (c.f. <u>http://inspirehep.net/record/816768</u>)

Key Point: MANY Theories are Double Copies

(see also talks of Henrik, Song, Ellis, and Louise)

Key Point: MANY Theories are Double Copies

Let me give you the two ``negatives'' first:

- I don't know why such a gauge choice exists

- I don't know how to exploit the benefits in all circumstances

Key Point: MANY Theories are Double Copies

Let me give you some positives:

+ Web of relationships between theories

+ Can exploit for technical simplicity in prediction (see also Simon's and Henrik's talks)
+ Exposes a beautiful geometry in S-matrix

+ Each of the ``negatives'' is an opportunity to learn about the language we use to describe the universe.

1. Need for Technical Simplicity

(the perils of infinite employment prospects)

(See also Zvi's talk!)

Complexity of Carrying Unphysical Information

"Do Feynman rules represent a useful solution??"

trees: semi-classical

loops: increasing quantum corrections

Richard

Off-shell three-graviton vertex:

 $\frac{\delta S^3}{\delta \varphi_{\mu\nu} \delta \varphi_{\sigma\tau} \delta \varphi_{\rho\lambda}} \rightarrow 2\eta^{\mu\tau} \eta^{\nu\sigma} k_1^{\ \lambda} k_1^{\ \rho} + 2\eta^{\mu\sigma} \eta^{\nu\tau} k_1^{\ \lambda} k_1^{\ \rho} - 2\eta^{\mu\nu} \eta^{\sigma\tau} k_1^{\ \lambda} k_1^{\ \rho} + 2\eta^{\lambda\sigma} \eta^{\mu\nu} k_1^{\ \sigma} k_1^{\ \rho} + \eta^{\mu\tau} \eta^{\nu\sigma} k_2^{\ \lambda} k_1^{\ \rho} + \eta^{\mu\sigma} \eta^{\nu\tau} k_2^{\ \lambda} k_1^{\ \rho} + \eta^{\lambda\tau} \eta^{\nu\sigma} k_2^{\ \mu} k_1^{\ \rho} + \eta^{\mu\sigma} \eta^{\nu\tau} k_2^{\ \lambda} k_1^{\ \rho} + \eta^{\mu\sigma} \eta^{\nu\sigma} k_2^{\ \mu} k_1^{\ \rho} + \eta^{\mu\sigma} \eta^{\mu\sigma} k_2^{\ \mu} k_1^{\ \mu} + \eta^{\mu\sigma} \eta^{\mu\sigma} k_2^{\ \mu} k_1^{\ \mu} + \eta^{\mu\sigma} \eta^{\mu\sigma} k_2^{\ \mu} k_1^{\ \mu} + \eta^{\mu\sigma} \eta^{\mu\sigma} k_2^{\$

 $\eta^{\lambda\sigma}\eta^{\nu\tau}k_{2}^{\ \mu}k_{1}^{\ \rho} + \eta^{\lambda\tau}\eta^{\mu\sigma}k_{2}^{\ \nu}k_{1}^{\ \rho} + \eta^{\lambda\sigma}\eta^{\mu\tau}k_{2}^{\ \nu}k_{1}^{\ \rho} + \eta^{\lambda\tau}\eta^{\nu\sigma}k_{3}^{\ \mu}k_{1}^{\ \rho} + \eta^{\lambda\sigma}\eta^{\nu\tau}k_{3}^{\ \mu}k_{1}^{\ \rho} \eta^{\sigma\tau}k_{3}^{\mu}k_{1}^{\rho} + \eta^{\lambda\tau}\eta^{\mu\sigma}k_{3}^{\nu}k_{1}^{\rho} + \eta^{\lambda\sigma}\eta^{\mu\tau}k_{3}^{\nu}k_{1}^{\rho} - \eta^{\lambda\mu}\eta^{\sigma\tau}k_{3}^{\nu}k_{1}^{\rho} + \eta^{\lambda\nu}\eta^{\mu\tau}k_{3}^{\nu}k_{3}^{\nu}k_{1}^{\rho} + \eta^{\lambda\nu}\eta^{\mu\tau}k_{3}^{\nu}k_{3}^{\nu}k_{1}^{\rho} + \eta^{\lambda\nu}\eta^{\mu\tau}k_{3}^{\nu}k_{1}^{\rho} + \eta^{\lambda\nu}\mu^{\mu\tau}k_{3}^{\nu}k_{1}^{\rho} + \eta^{\lambda\nu}\mu^{\mu\tau}k_{3}^{\nu}k_{1}^{\rho} + \eta^{\lambda\nu}\mu^{\mu\tau}k_{1}^{\rho} + \eta^{\lambda\nu}\mu^{\mu\tau}k_{1}^{\rho} + \eta^{\lambda\nu}\mu^{\mu\tau}k_{1}^{\rho} + \eta^{\lambda}\mu^{\mu\tau}k_{1}^{\rho} + \eta^{\lambda}\mu^{\mu}k_{1}^{\rho} + \eta^{\lambda}\mu^{\mu}k_{1}^{\rho} + \eta^{\lambda}\mu^{\mu}k_{1}^{\rho} + \eta^{\lambda}\mu^{\mu}k_{1}^{\rho} + \eta^{\lambda}\mu^{\mu}k_{1}^{\rho} + \eta^{$ $\eta^{\lambda\nu}\eta^{\prime}$ $s^{\sigma}k_{1}^{\rho} +$ $\eta^{\lambda\mu}\eta^{
u\tau}k_3$ ${}_{3}{}^{\sigma}k_{1}{}^{\rho}+\eta^{\lambda\nu}\eta^{\mu\sigma}k_{3}{}^{\tau}k_{1}{}^{\rho}+\eta^{\lambda\mu}\eta^{\nu\sigma}k_{3}{}^{\tau}k_{1}{}^{\rho}+2\eta^{\mu\nu}\eta^{\rho\tau}k_{1}{}^{\lambda}k_{1}{}^{\sigma}+2\eta^{\mu\nu}\eta^{\rho\sigma}k_{1}{}^{\lambda}k_{1}{}^{\tau} 2\eta^{\lambda\rho}\eta^{\mu\nu}k_{1}^{\sigma}k_{1}^{\tau} + 2\eta^{\lambda\nu}\eta^{\mu\rho}k_{1}^{\sigma}k_{1}^{\tau} + 2\eta^{\lambda\mu}\eta^{\nu\rho}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu\tau}\eta^{\nu\rho}k_{1}^{\sigma}k_{2}^{\lambda} + \eta^{\mu\rho}\eta^{\nu\tau}k_{1}^{\sigma}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu\tau}\eta^{\nu\rho}k_{1}^{\sigma}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu\tau}\eta^{\nu\rho}k_{1}^{\sigma}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\sigma}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\sigma}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\sigma}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\sigma}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\sigma}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\sigma}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\sigma}k_{1}^{\tau} + \eta^{\mu}\eta^{\nu}\eta^{\nu}k_{1}^{\tau} + \eta^{\mu}\eta^{\mu}\eta^{\nu}k_{1}^{\tau} + \eta^{\mu}\eta^{\mu}\eta^{\nu}\mu^{\mu}\eta^{\nu}k_{1}^{\tau} + \eta^{\mu}\eta^{\mu}\eta^{\nu}\mu^{\mu}\eta^{\nu} + \eta^{\mu}\eta^{\mu}\eta^{\nu}\mu^{\mu}\eta^{\nu} + \eta^{\mu}\eta^{\mu}\eta^{\mu}\eta$ $\eta^{\mu\sigma}\eta^{\nu\rho}k_1^{\ \tau}k_2^{\ \lambda} + \eta^{\mu\rho}\eta^{\nu\sigma}k_1^{\ \tau}k_2^{\ \lambda} + \eta^{\nu\tau}\eta^{\rho\sigma}k_1^{\ \lambda}k_2^{\ \mu} + \eta^{\nu\sigma}\eta^{\rho\tau}k_1^{\ \lambda}k_2^{\ \mu} + \eta^{\lambda\tau}\eta^{\nu\rho}k_1^{\ \lambda}k_2^{\ \lambda} + \eta^{\mu}k_1^{\ \lambda}k_2^{\ \mu} + \eta^{\lambda\tau}\eta^{\nu\rho}k_1^{\ \lambda}k_2^{\ \mu} + \eta^{\lambda\tau}\eta^{\nu}k_1^{\ \mu}k_1^{\ \mu}k_1^{\ \mu} + \eta^{\lambda\tau}\eta^{\nu}k_1^{\ \mu}k_1^{\ \mu}$ $\sigma_{k_2}^{\mu}$ – $\eta^{\lambda\rho}\eta^{\nu\tau}k_1$ $2\eta^{\nu\rho}\eta^{\sigma\tau}k_{2}^{\lambda}k_{2}^{\mu} + \eta^{\mu\tau}\eta^{\rho\sigma}k_{1}^{\lambda}k_{2}^{\nu} + \eta^{\mu\sigma}\eta^{\rho\tau}k_{1}^{\lambda}k_{2}^{\nu} + \eta^{\lambda\tau}\eta^{\mu\rho}k_{1}^{\sigma}k_{2}^{\nu} - \eta^{\lambda\rho}\eta^{\mu\tau}k_{1}^{\nu}$ $\sigma_{k_2}^{\nu} +$ $\eta^{\lambda\mu}\eta^{\rho\tau}k_{1}{}^{\sigma}k_{2}{}^{\nu} + \eta^{\lambda\sigma}\eta^{\mu\rho}k_{1}{}^{\tau}k_{2}{}^{\nu} - \eta^{\lambda\rho}\eta^{\mu\sigma}k_{1}{}^{\tau}k_{2}{}^{\nu} + \eta^{\lambda\mu}\eta^{\rho\sigma}k_{1}{}^{\tau}k_{2}{}^{\nu} + 2\eta^{\mu\rho}\eta^{\sigma\tau}k_{2}{}^{\lambda}k_{2}{}^{\nu} +$ $2\eta^{\lambda\tau}\eta^{\rho\sigma}k_{2}^{\mu}k_{2}^{\nu} + 2\eta^{\lambda\sigma}\eta^{\rho\tau}k_{2}^{\mu}k_{2}^{\nu} - 2\eta^{\lambda\rho}\eta^{\sigma\tau}k_{2}^{\mu}k_{2}^{\nu} + \eta^{\mu\tau}\eta^{\nu\sigma}k_{1}^{\lambda}k_{2}^{\rho} + \eta^{\mu\sigma}\eta^{\nu\tau}k_{1}^{\lambda}k_{2}^{\rho} +$ $\eta^{\lambda\nu}\eta^{\mu\tau}k_{1}{}^{\sigma}k_{2}{}^{\rho} + \eta^{\lambda\mu}\eta^{\nu\tau}k_{1}{}^{\sigma}k_{2}{}^{\rho} + \eta^{\lambda\nu}\eta^{\mu\sigma}k_{1}{}^{\tau}k_{2}{}^{\rho} + \eta^{\lambda\mu}\eta^{\nu\sigma}k_{1}{}^{\tau}k_{2}{}^{\rho} + 2\eta^{\mu\tau}\eta^{\nu\sigma}k_{2}$ $k_2^{\lambda} k_2^{\rho} +$ $2\eta^{\mu\sigma}\eta^{\nu\tau}k_{2}^{\lambda}k_{2}^{\rho} - 2\eta^{\mu\nu}\eta^{\sigma\tau}k_{2}^{\lambda}k_{2}^{\rho} + 2\eta^{\lambda\nu}\eta^{\sigma\tau}k_{2}^{\mu}k_{2}^{\rho} + 2\eta^{\lambda\mu}\eta^{\sigma\tau}k_{2}^{\nu}k_{2}^{\rho} + \eta^{\nu\tau}\eta^{\rho\sigma}k_{1}^{\lambda}k_{3}^{\mu} +$ $\eta^{\nu\sigma}\eta^{\rho\tau}k_1\bar{\lambda}_{k_3}\bar{\mu} - \eta^{\nu\rho}\eta^{\sigma\tau}k_1\bar{\lambda}_{k_3}\bar{\mu} + \eta^{\lambda\tau}\eta^{\nu\rho}k_1\bar{\sigma}_{k_3}\bar{\mu} + \eta^{\lambda\nu}\eta^{\rho\tau}k_1^{\sigma}k_3^{\mu} + \eta^{\lambda\sigma}\eta^{\nu\rho}k_1^{\tau}k_3^{\mu} + \eta^{\lambda\sigma}\eta^{\nu\rho}k_1^{\tau}k_3^{\mu}k_1^{\tau} + \eta^{\lambda\sigma}\mu^{\nu}k_1^{\tau}k_3^{\mu} + \eta^{\lambda\sigma}\eta^{\nu}k_1^{\tau}k_3^{\mu} + \eta^{\lambda\sigma}\eta^{\nu}k_1^{\tau}k_1^$ $\eta^{\lambda\nu}\eta^{\rho\sigma}k_1^{\ \tau}k_3^{\ \mu} + \eta^{\nu\tau}\eta^{\rho\sigma}k_2^{\ \lambda}k_3^{\ \mu} + \eta^{\nu\sigma}\eta^{\rho\tau}k_2^{\ \lambda}k_3^{\ \mu} + \eta^{\lambda\tau}\eta^{\rho\sigma}k_2^{\ \nu}k_3^{\ \mu} + \eta^{\lambda\sigma}\eta^{\rho\tau}k_2$ $^{\nu}k_{3}^{\mu} +$ $\eta^{\lambda\tau}\eta^{\nu\sigma}k_{2}^{\rho}k_{3}^{\mu} + \eta^{\lambda\sigma}\eta^{\nu\tau}k_{2}^{\rho}k_{3}^{\mu} + \eta^{\mu\tau}\eta^{\rho\sigma}k_{1}^{\lambda}k_{3}^{\nu} + \eta^{\mu\sigma}\eta^{\rho\tau}k_{1}^{\lambda}k_{3}^{\nu} - \eta^{\mu\rho}\eta^{\sigma\tau}k_{1}^{\lambda}k_{3}^{\nu}$ λ_{k_3} $\eta^{\lambda\tau}\eta^{\mu
ho}k_1$ $\begin{bmatrix}\sigma_{k_3}^{\nu} + \eta^{\lambda\mu}\eta^{\rho\tau}k_1^{\sigma}k_3^{\nu} + \eta^{\lambda\sigma}\eta^{\mu\rho}k_1^{\tau}k_3^{\nu} + \eta^{\lambda\mu}\eta^{\rho\sigma}k_1^{\tau}k_3^{\nu} + \eta^{\mu\tau}\eta^{\rho\sigma}k_2\end{bmatrix}$ $\eta^{\mu\sigma}\eta^{\rho\tau}k_{2}^{\lambda}k_{3}^{\nu} + \eta^{\lambda\tau}\eta^{\rho\sigma}k_{2}^{\mu}k_{3}^{\nu} + \eta^{\lambda\sigma}\eta^{\rho\tau}k_{2}^{\mu}k_{3}^{\nu} + \eta^{\lambda\tau}\eta^{\mu\sigma}k_{2}^{\rho}k_{3}^{\nu} + \eta^{\lambda\sigma}\eta^{\mu\tau}k_{2}^{\rho}k_{3}^{\nu}$ $2\eta^{\lambda\tau}\eta^{\rho\sigma}k_{3}^{\mu}k_{3}^{\nu} + 2\eta^{\lambda\sigma}\eta^{\rho\tau}k_{3}^{\mu}k_{3}^{\nu} - 2\eta^{\lambda\rho}\eta^{\sigma\tau}k_{3}^{\mu}k_{3}^{\nu} + \eta^{\mu\tau}\eta^{\nu\rho}k_{1}^{\lambda}k_{3}^{\sigma} + \eta^{\mu\rho}\eta^{\nu\tau}k_{1}^{\lambda}k_{3}^{\sigma}$ $\eta^{\lambda\nu}\eta^{\mu\rho}k_{1}^{\ \tau}k_{3}^{\ \sigma} + \eta^{\lambda\mu}\eta^{\nu\rho}k_{1}^{\ \tau}k_{3}^{\ \sigma} + \eta^{\mu\tau}\eta^{\nu\rho}k_{2}^{\ \lambda}k_{3}^{\ \sigma} + \eta^{\mu\rho}\eta^{\nu\tau}k_{2}^{\ \lambda}k_{3}^{\ \sigma} - \eta^{\mu\nu}\eta^{\rho\tau}k_{2}^{\ \lambda}k_{3}^{\ \sigma}$ λ_{k_3} $\eta^{\lambda\tau} \eta^{\nu\rho} k_{2}{}^{\mu} k_{3}{}^{\sigma} + \eta^{\lambda\nu} \eta^{\rho\tau} k_{2}{}^{\mu} k_{3}{}^{\sigma} + \eta^{\lambda\tau} \eta^{\mu\rho} k_{2}{}^{\nu} k_{3}{}^{\sigma} + \eta^{\lambda\mu} \eta^{\rho\tau} k_{2}{}^{\nu} k_{3}{}^{\sigma} - \eta^{\lambda\tau} \eta^{\mu\nu} k_{2}{}^{\rho} k_{3}{}^{\rho}$ $\eta^{\lambda\nu}\eta^{\mu\tau}k_2^{\ \rho}k_3$ $s^{\sigma} + \eta^{\lambda\mu} \eta^{\nu\tau} k_{2}^{\rho} k_{3}^{\sigma} + 2\eta^{\lambda\rho} \eta^{\nu\tau} k_{3}^{\mu} k_{3}^{\sigma} + 2\eta^{\lambda\rho} \eta^{\mu\tau} k_{3}^{\nu} k_{3}^{\sigma} + \eta^{\mu\sigma} \eta^{\nu\rho} k_{1}^{\nu}$ λ_{k_3} $\eta^{\mu
ho}\eta^{\nu\sigma}k_1$ $\begin{bmatrix} \lambda k_3^{\tau} + \eta^{\lambda\nu} \eta^{\mu\rho} k_1^{\sigma} k_3^{\tau} + \eta^{\lambda\mu} \eta^{\nu\rho} k_1^{\sigma} k_3^{\tau} + \eta^{\mu\sigma} \eta^{\nu\rho} k_2^{\lambda} k_3^{\tau} + \eta^{\mu\rho} \eta^{\nu\sigma} k_2 \end{bmatrix}$ $\gamma^{\rho\sigma}k_2^{\lambda}k_3^{\tau} + \eta^{\lambda\sigma}\eta^{\nu\rho}k_2^{\mu}k_3^{\tau} + \eta^{\lambda\nu}\eta^{\rho\sigma}k_2^{\mu}k_3^{\tau} + \eta^{\lambda\sigma}\eta^{\mu\rho}k_2^{\nu}k_3^{\tau} + \eta^{\lambda\mu}\eta^{\rho\sigma}k_2$ $\lambda^{\sigma}\eta^{\mu\nu}k_{2}^{\rho}k_{3}^{\tau} + \eta^{\lambda\nu}\eta^{\mu\sigma}k_{2}^{\rho}k_{3}^{\tau} + \eta^{\lambda\mu}\eta^{\nu\sigma}k_{2}^{\rho}k_{3}^{\tau} + 2\eta^{\lambda\rho}\eta^{\nu\sigma}k_{3}^{\mu}k_{3}^{\tau} + 2\eta^{\lambda\rho}\eta^{\mu\sigma}k_{3}^{\nu}k_{3}^{\nu}$ $2\eta^{\lambda\rho}\eta^{\mu\nu}k_{3}^{\sigma}k_{3}^{\tau}+2\eta^{\lambda\nu}\eta^{\mu\rho}k_{3}^{\sigma}k_{3}^{\tau}+2\eta^{\lambda\mu}\eta^{\nu\rho}k_{3}^{\sigma}k_{3}^{\tau}-\eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_{1}\cdot k_{2}-\eta^{\lambda\sigma}\eta^{\mu\tau}\eta^{\nu\rho}k_{1}\cdot$ $k_{2} - \eta^{\lambda\tau} \eta^{\mu\rho} \eta^{\nu\sigma} k_{1} \cdot k_{2} + \eta^{\lambda\rho} \eta^{\mu\tau} \eta^{\nu\sigma} k_{1} \cdot k_{2} - \eta^{\lambda\sigma} \eta^{\mu\rho} \eta^{\nu\tau} k_{1} \cdot k_{2} + \eta^{\lambda\rho} \eta^{\mu\sigma} \eta^{\mu\sigma} \eta^{\nu\tau} k_{1} \cdot k_{2} + \eta^{\lambda\rho} \eta^{\mu\sigma} \eta^{\mu\sigma} \eta^{\mu\tau} \eta^{\mu\sigma} \eta^{\mu\sigma} \eta^{\mu\tau} \eta^{\mu\sigma} \eta^{\mu\sigma} \eta^{\mu\sigma} \eta^{\mu\sigma} \eta^{\mu\tau} \eta^{\mu\sigma} \eta^{\mu\tau} \eta^{\mu\sigma} \eta^{\mu\sigma} \eta^{\mu\tau} \eta^{\mu\sigma} \eta^{\mu\tau} \eta^{\mu\sigma} \eta^{\mu\tau} \eta^{\mu$ $\lambda^{\tau}\eta^{\mu\nu}\eta^{\rho\sigma}k_{1} \cdot k_{2} - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\rho\sigma}k_{1} \cdot k_{2} - \eta^{\lambda\mu}\eta^{\nu\tau}\eta^{\rho\sigma}k_{1} \cdot k_{2} + 2\eta^{\lambda\sigma}\eta^{\mu\nu}\eta^{\rho\tau}k_{1} \cdot k_{2} - \eta^{\lambda\mu}\eta^{\mu\tau}\eta^{\rho\sigma}k_{1} \cdot k_{2} - \eta^{\lambda\mu}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\rho\sigma}k_{1} \cdot k_{2} - \eta^{\lambda\mu}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\rho\sigma}k_{1} \cdot k_{2} - \eta^{\lambda\mu}\eta^{\mu\tau}$ $\eta^{\lambda\nu}\eta^{\mu\sigma}\eta^{\rho\tau}k_1 \cdot k_2 - \eta^{\lambda\mu}\eta^{\nu\sigma}\eta^{\rho\tau}k_1 \cdot k_2 - 2\eta^{\lambda\rho}\eta^{\mu\nu}\eta^{\sigma\tau}k_1 \cdot k_2 + 2\eta^{\lambda\nu}\eta^{\mu\rho}\eta^{\sigma\tau}k_1 \cdot k_2 +$ $2\eta^{\lambda\mu}\eta^{\nu\rho}\eta^{\sigma\tau}k_1 + k_2 - \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_1 + k_3 - \eta^{\lambda\sigma}\eta^{\mu\tau}\eta^{\nu\rho}k_1 + k_3 - \eta^{\lambda\tau}\eta^{\mu\rho}\eta^{\nu\sigma}k_1 + k_3 + \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_1 + k_3 + \eta^{\lambda\tau}\eta^{\mu\rho}\eta^{\nu\sigma}k_1 + \eta^{\lambda\tau}\eta^{\mu\rho}\eta^{\nu\sigma}k_1 + \eta^{\lambda\tau}\eta^{\mu\rho}\eta^{\nu\sigma}k_1 + \eta^{\lambda\tau}\eta^{\mu\rho}\eta^{\nu\sigma}k_1 + \eta^{\lambda\tau}\eta^{\mu\rho}\eta^{\nu\sigma}k_1 + \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\sigma}k_1 + \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\mu\sigma}\eta^{\nu\sigma}k_1 + \eta^{\lambda\tau}\eta^{\mu\sigma}\eta^{\mu\sigma}\eta^{\mu\sigma}\eta^{\mu\sigma}\mu^{\mu\sigma}\eta^{\nu\sigma}\mu^{\mu\sigma}\eta^{$ $2\eta^{\lambda\rho}\eta^{\mu\tau}\eta^{\nu\sigma}k_{1} \cdot k_{3} - \eta^{\lambda\sigma}\eta^{\mu\rho}\eta^{\nu\tau}k_{1} \cdot k_{3} + 2\eta^{\lambda\rho}\eta^{\mu\sigma}\eta^{\nu\tau}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\rho\sigma}k_{1} \cdot k_{3} - \eta^{\mu\nu}\eta^{\mu\sigma}\eta^{\nu\tau}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\sigma}k_{1} \cdot k_{3} - \eta^{\mu\nu}\eta^{\mu\sigma}\eta^{\nu\tau}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\sigma}\eta^{\nu\tau}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\sigma}\eta^{\mu\tau}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\sigma}\eta^{\mu\tau}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\sigma}\eta^{\mu\tau}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\mu\tau}k_{1} \cdot k_{3} + 2\eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\mu\tau}\eta^{\mu$ $\eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\rho\sigma}k_1 \cdot k_3 - \eta^{\lambda\mu}\eta^{\nu\tau}\eta^{\rho\sigma}k_1 \cdot k_3 + 2\eta^{\lambda\sigma}\eta^{\mu\nu}\eta^{\rho\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\sigma}\eta^{\rho\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\sigma}\eta^{\mu\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\tau}k_1 \cdot k_3 - \eta^{\lambda\nu}k_1 \cdot k_1 \cdot k_3 - \eta^{\lambda\nu}k_1 \cdot k_1 \cdot k_1 - \eta^{\lambda\nu}k_1 \cdot k_1 - \eta^{\lambda\nu}k_1$ $\lambda^{\lambda\tau}\eta^{\mu\sigma}\eta^{\nu\rho}k_2 \cdot k_3 - \eta^{\lambda\sigma}\eta^{\mu\tau}\eta^{\nu\rho}k_2 \cdot k_3 - \eta^{\lambda\tau}\eta^{\mu\rho}\eta^{\nu\sigma}k_2 \cdot k_3 + 2\eta^{\lambda\rho}\eta^{\mu\tau}\eta^{\nu\sigma}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\nu}\eta^{\nu\sigma}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\nu}\eta^{\nu\nu}\eta^{\nu\sigma}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\nu}\eta^{\nu\nu}\eta^{$ $\eta^{\lambda\sigma}\eta^{\mu\rho}\eta^{\nu\tau}k_{2} \cdot k_{3} + 2\eta^{\lambda\rho}\eta^{\mu\sigma}\eta^{\nu\tau}k_{2} \cdot k_{3} + \eta^{\lambda\tau}\eta^{\mu\nu}\eta^{\rho\sigma}k_{2} \cdot k_{3} - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\rho\sigma}k_{2} \cdot k_{3} - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\rho\sigma}k_{3} - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\rho\sigma}k_{3} - \eta^{\lambda\nu}\eta^{\mu\tau}\eta^{\mu\tau}\eta^{\rho\sigma}k_{3} - \eta^{\lambda\nu}\eta^{\mu\tau}\eta$ $\eta^{\lambda\mu}\eta^{\nu\tau}\eta^{\rho\sigma}k_2 \cdot k_3 + \eta^{\lambda\sigma}\eta^{\mu\nu}\eta^{\rho\tau}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\sigma}\eta^{\rho\tau}k_2 \cdot k_3 - \eta^{\lambda\mu}\eta^{\nu\sigma}\eta^{\rho\tau}k_2 \cdot k_3 - \eta^{\lambda\mu}\eta^{\nu\sigma}\eta^{\mu\tau}k_2 \cdot k_3 - \eta^{\lambda\mu}\eta^{\nu\tau}k_2 \cdot k_3 - \eta^{\lambda\mu}k_2 \cdot k_3 - \eta^{\lambda\mu}k_3 - \eta^{\lambda\mu}k_2$ $2\eta^{\lambda\rho}\eta^{\mu\nu}\eta^{\sigma\tau}k_2 \cdot k_3 + 2\eta^{\lambda\nu}\eta^{\mu\rho}\eta^{\sigma\tau}k_2 \cdot k_3 + 2\eta^{\lambda\mu}\eta^{\nu\rho}\eta^{\sigma\tau}k_2 \cdot k_3$

171 terms

[DeWitt, 1967]

As Zvi told us textbook approach crumbles:

Feynman rules for a graviton: 171 terms per vertex 3 terms per edge

BUT FINAL EXPRESSIONS ARE TRACTABLE

~10³¹

TERMS

Vast majority of terms: unphysical freedom that must cancel

Some secrets obscured in the Lagrangian

Calculate with physical (on-shell) quantities: $k_i^2 = 0$

Physical (on-shell) tree-level amplitudes contain all the information
necessary to build all loop-level amplitudesBern, Dixon, Dunbar, and Kosower ('94,'95)Bern, Dixon, and Kosower ('96)

Physical (on-shell) three-vertices contain all the information necessary to build all tree-level amplitudes Britto, Cachazo, Feng, and Witten ('05)

Complexity of Insisting on Local Representations

Five point I-loop (no triangles, no bubbles)

JJMC, Johansson (2011)

Five point 2-loop (no triangles, no bubbles)

Five point 3-loop (no bubbles, no triangles)

2. Can exploit Double Copy of YM

Color and Kinematics dance together.

Solving Yang-Mills theories means solving Gravity theories.

Generic D-dimensional YM theories have a fascinating structure at tree-level

Generic D-dimensional YM theories have a fascinating structure at tree-level

YM: Color-Kinematic Duality, makes manifest gravitational double copy structure:

$$-iM_n^{\text{tree}} = \sum_{\mathcal{G}\in\text{cubic}} \frac{n(\mathcal{G})\tilde{n}(\mathcal{G})}{D(\mathcal{G})}$$

Valid multi-loop generalization?

$$\frac{(-i)^{L}}{g^{n-2+2L}}\mathcal{A}^{\text{loop}} = \sum_{\mathcal{G}\in\text{cubic}}\int \prod_{l=1}^{L} \frac{d^{D}p_{l}}{(2\pi)^{D}} \frac{1}{S(\mathcal{G})} \frac{n(\mathcal{G})c(\mathcal{G})}{D(\mathcal{G})}$$

CONJECTURE: for all graphs, can impose CK on every edge:

Consequence of unitarity: double copy structure holds.

Valid multi-loop generalization?

$$\frac{(-i)^{L}}{g^{n-2+2L}}\mathcal{A}^{\text{loop}} = \sum_{\mathcal{G}\in\text{cubic}}\int \prod_{l=1}^{L} \frac{d^{D}p_{l}}{(2\pi)^{D}} \frac{1}{S(\mathcal{G})} \frac{n(\mathcal{G})c(\mathcal{G})}{D(\mathcal{G})}$$

CONJECTURE: for all graphs, can impose CK on every edge:

Consequence of unitarity: double copy structure holds.

$$\frac{(-i)^{L+1}}{(\kappa/2)^{n-2+2L}}\mathcal{M}^{\text{loop}} = \sum_{\mathcal{G}\in\text{cubic}}\int\prod_{l=1}^{L}\frac{d^{D}p_{l}}{(2\pi)^{D}}\frac{1}{S(\mathcal{G})}\frac{n(\mathcal{G})\tilde{n}(\mathcal{G})}{D(\mathcal{G})}$$

Calculate by Exploiting Color-Kinematics Duality

Leads to important constraints at tree & loop-level for gauge theories

Calculate by Exploiting Color-Kinematics Duality

Leads to important constraints at tree & loop-level for gauge theories

Calculate by Exploiting Color-Kinematics Duality

Leads to important constraints at tree & loop-level for gauge theories

Gluons for (almost) nothing... gravitons for free! Five point 3-loop N=4 SYM & N=8 SUGRA

Five point 3-loop N=4 SYM & N=8 SUGRA

Five point 3-loop N=4 SYM & N=8 SUGRA

Full four loop N=4 SYM & N=8 SUGRA

Full four loop N=4 SYM & N=8 SUGRA

Full four loop N=4 SYM & N=8 SUGRA

4-loops Maximal SUSY

Many things to be learned, not the least, the existence of integral relations between gauge and gravity theories

Problem Solved?

No.

We want all-order understanding!

What's the barrier?

Frustrating Problem:

• Exploiting Color-Kinematics duality at loop-level means solving functional equations: number of master graphs controlled, but require a parameterized ansatz.

The set of multi loop Jacobi equations will relate the *same* numerator functions with permuted arguments.
Convenient language: graphs of graphs

tree-level, imposing CK is no problem

each vertex is a graph

each triangle represents a Jacobi identity between graphs

tree-level, imposing CK is no problem

as each node represents a separate graph, Jacobi eqns impose linear relations between numerators

loop level, functional constraints

nodes can be the same graph topology but with permuted labels!

Off-shell pre-Integrand: a solution to label-shifting

introduce a distinct graph for every possible labeling of m-point L-loop graph topologies with L indep momenta.

this will be isomorphic to a subset of (2L+m)-point tree graphs, with 2L "ext" labels: $\{l_1, -l_1, \ldots, -l_L, l_L\}$

3. Exposing a geometry in the S-matrix

(the best polytopes are graphs of graphs!)

Graphs contributing to a color-ordered tree, generate the 1-skeleton of Stasheff polytopes joined only by \hat{t}

(these polytopes are also called **associahedra**)

You might think you need (m-2)! of these color-ordered amplitudes to capture everything because this is what is required to touch every vertex at least once:

You might think you need (m-2)! of these color-ordered amplitudes to capture everything because this is what is required to touch every vertex at least once:

In fact, such a choice is the KK-basis, proven sufficient by Del Duca, Dixon, and Maltoni

But notice, because of color-kinematics, only (m-2)! nodes are needed to specify both the color factors and numerator factors of everyone

But notice, because of color-kinematics, only (m-2)! nodes are needed to specify both the color factors and numerator factors of everyone

But notice, because of color-kinematics, only (m-2)! nodes are needed to specify both the color factors and numerator factors of everyone

This reduces the set of necessary color-ordered amplitudes (associahedra) to (m-3!)

At every multiplicity the masters can be chosen to form the 1-skeleton of a polytope related by \hat{u} on every internal edge of the relevant scattering graphs

(these polytopes are called **permutahedra**)

Can linearly solve for the (m-2)! numerators of the masters in terms of the (m-3)! "BCJ" independent color-ordered amplitudes. In fact you get (m-3)! numerators in terms of the color-ordered amplitudes and (m-3)(m-3)! free functions.

(generalized gauge freedom)

Building blocks at 6-points:

color-ordered amplitude

set of masters

TREE-LEVEL SUMMARY

- 1. Gauge invariant building blocks that speak to the theory: color-ordered amplitudes, associahedra
- 2. **CK means only need to specify the boundary data**: the master graphs, given by the relevant *permutahedron*
- 3. Can solve for the *full amplitude efficiently* in terms of the (n-3)! independent associohedra

Hints that efficiency <---> geometry

4. Warmup: Color-Kinematics on cuts

Contributions to Color-Dressed Cut

These are separate cut graphs in our graph of graphs.

Can identify linear Jacobis from acting \hat{t} and \hat{u} on every uncut edge — building every triangle — until closure.

Contributions to Color-Dressed Cut

Can identify linear Jacobis from acting \hat{t} and \hat{u} on every uncut edge — building every triangle — until closure. Drop unphysical graphs for theory.

92 cut-graphs contribute to this N=4 CD cut

(3) (3) (1) (15)

All cut-graphs specified by 8 masters

Only 2 of which need be non-vanishing: others pure gen. gauge-freedom.

Just like tree-level, can solve for master numerators in terms of color-ordered building blocks: color-ordered cuts

Just like tree-level, can solve for master numerators in terms of color-ordered building blocks: color-ordered cuts

CUT SUMMARY

- Gauge invariant building blocks that speak to the theory: color-ordered cuts — outer products of associahedra
- 2. **CK means only needing to specify the boundary data**: n(g) of *contributing* master graphs
- 3.Can express these masters directly *in terms of color-ordered cuts*

5. Off-shell pre-Integrand

Relax isomorphism, but achieve Mulitloop color-kinematics without an ansatz

An algebraic loop-level approach

- Introduce multi-loop objects: pre-Integrands \mathcal{I}_m^L
- =

- will contain all cut information manifestly, not functionally!
- can decompose into color-stripped polytopes just like at tree-level or on cuts
- introduce enough graphs to cover all labelings
- each graph appears with fixed labels so can solve Jacobi's linearly

$$\{n_a + n_b + n_c = 0\} \rightarrow n_j = J_{jk}m_k$$

Asymmetric graphs contributing to Pre-Integrand: \mathcal{I}_m^L

- take all (2L +m)-point tree graphs
- identify 2L ext legs with +/- indep. off-shell loop momentum labels $\{l_1, -l_1, \ldots, -l_L, l_L\}$

these labels dress all channels momentum can run through at L-loops M-point.

Recall 6-loop trees.

full tree amplitude

Now we can talk interestingly about pre-Integrands of loops

Now we can talk interestingly about pre-Integrands of loops

non-masters

Any given building block

will be comprised of all the one-loop graphs labeled appropriately to the color-order:

Any given

can dress with off-shell information (unitarity, recursion, etc)

does not need to come from a Jacobi satisfying representation. This will be boundary data. It just has to be true and off-shell on internal legs.

For N=4 SYM at 4pt two-loop only need planar and non-planar boxes

Jacobi eqns reduce all numerators to linear combination of two functions (2 asymmetric master graphs):

s (st A(1234)) t (st A(1234))

N=1 1-loop 4pt example:

7 off-shell masters, consider 7 color-ordered pre-Integrands

1st. in terms of relevant graphs

$$\begin{split} \mathbb{I}\left[\left\{-\ell, \ k_{1}, \ k_{2}, \ k_{3}, \ k_{4}, \ \ell\right\}\right] &= \frac{n_{1}}{d_{1}} + \frac{n_{25}}{d_{25}} + \frac{n_{26}}{d_{26}} + \frac{n_{27}}{d_{27}} \\ \mathbb{I}\left[\left\{-\ell, \ k_{1}, \ k_{2}, \ k_{3}, \ \ell, \ k_{4}\right\}\right] &= -\frac{n_{1}}{d_{1}} - \frac{n_{2}}{d_{2}} - \frac{n_{5}}{d_{5}} - \frac{n_{19}}{d_{19}} - \frac{n_{25}}{d_{25}} - \frac{n_{26}}{d_{26}} - \frac{n_{28}}{d_{28}} - \frac{n_{35}}{d_{35}} - \frac{n_{55}}{d_{55}} - \frac{n_{56}}{d_{56}} \\ \mathbb{I}\left[\left\{-\ell, \ k_{1}, \ k_{2}, \ k_{4}, \ k_{3}, \ \ell\right\}\right] &= \frac{n_{2}}{d_{2}} - \frac{n_{27}}{d_{27}} + \frac{n_{28}}{d_{28}} + \frac{n_{29}}{d_{29}} \\ \mathbb{I}\left[\left\{-\ell, \ k_{1}, \ k_{2}, \ k_{4}, \ \ell, \ k_{3}\right\}\right] &= -\frac{n_{1}}{d_{1}} - \frac{n_{2}}{d_{2}} - \frac{n_{3}}{d_{3}} - \frac{n_{13}}{d_{13}} - \frac{n_{25}}{d_{25}} - \frac{n_{28}}{d_{28}} - \frac{n_{29}}{d_{29}} - \frac{n_{31}}{d_{31}} - \frac{n_{47}}{d_{47}} - \frac{n_{48}}{d_{48}} \\ \mathbb{I}\left[\left\{-\ell, \ k_{1}, \ k_{2}, \ \ell, \ k_{3}, \ k_{4}\right\}\right] &= \frac{n_{2}}{d_{2}} + \frac{n_{5}}{d_{5}} + \frac{n_{6}}{d_{6}} + \frac{n_{19}}{d_{19}} + \frac{n_{20}}{d_{20}} + \frac{n_{23}}{d_{23}} - \frac{n_{27}}{d_{27}} + \frac{n_{28}}{d_{28}} - \frac{n_{33}}{d_{33}} - \frac{n_{52}}{d_{52}} + \frac{n_{55}}{d_{55}} + \frac{n_{60}}{d_{60}} \\ \mathbb{I}\left[\left\{-\ell, \ k_{1}, \ k_{2}, \ \ell, \ k_{4}, \ k_{3}\right\}\right] &= \frac{n_{1}}{d_{1}} + \frac{n_{3}}{d_{3}} + \frac{n_{4}}{d_{4}} + \frac{n_{13}}{d_{13}} + \frac{n_{14}}{d_{14}} + \frac{n_{17}}{d_{17}} + \frac{n_{25}}{d_{25}} + \frac{n_{27}}{d_{27}} + \frac{n_{33}}{d_{33}} + \frac{n_{47}}{d_{47}} + \frac{n_{52}}{d_{52}} + \frac{n_{53}}{d_{53}} \\ \mathbb{I}\left[\left\{-\ell, \ k_{1}, \ k_{3}, \ k_{2}, \ k_{4}, \ \ell\right\}\right] &= \frac{n_{3}}{d_{3}} - \frac{n_{26}}{d_{26}} + \frac{n_{30}}{d_{30}} + \frac{n_{31}}{d_{31}} \end{aligned}$$
N=1 1-loop 4pt example:

7 off-shell masters, consider 7 color-ordered pre-Integrands

2nd. in terms of 7 masters:

 $\mathbb{I}[\{-\ell, k_1, k_2, k_3, k_4, \ell\}] = \frac{n_4-n_6}{d_{27}} + \frac{n_5-n_6}{d_{26}} + \frac{n_3+n_5-n_6}{d_1} + \frac{n_3+n_5-n_6-n_7}{d_{25}} \\ \mathbb{I}[\{-\ell, k_1, k_2, k_3, \ell, k_4\}] = -\frac{n_5}{d_2} - \frac{n_3-n_4+n_5}{d_2} - \frac{n_5-n_6}{d_{26}} - \frac{n_5-n_6}{d_{35}} - \frac{n_3+n_5-n_6}{d_{56}} - \frac{n_3+n_5-n_6-n_7}{d_{1}} - \frac{n_3+n_5-n_6-n_7}{d_{28}} - \frac{n_3+n_5-n_6-n_7}{d_{55}} - \frac{n_3+n_5-n_6-n_7}{d_{55}} \\ \mathbb{I}[\{-\ell, k_1, k_2, k_4, k_3, \ell\}] = \frac{n_3-n_4}{d_2} + \frac{n_3-n_4+n_5}{d_2} - \frac{n_4-n_6}{d_{27}} + \frac{n_3+n_5-n_6-n_7}{d_{28}} \\ \mathbb{I}[\{-\ell, k_1, k_2, k_4, \ell, k_3\}] = -\frac{n_3}{d_3} - \frac{n_3-n_4}{d_{29}} - \frac{n_3-n_4}{d_{31}} - \frac{n_3-n_4}{d_{48}} - \frac{n_3-n_4+n_5}{d_2} - \frac{n_3+n_5-n_6}{d_1} - \frac{n_3+n_5-n_6-n_7}{d_{25}} - \frac{n_3+n_5-n_6-n_7}{d_{28}} - \frac{n_3+n_5-n_6-n_7}{d_{47}} - \frac{n_3-n_7+n_9}{d_{13}} \\ \mathbb{I}[\{-\ell, k_1, k_2, \ell, k_3, k_4\}] = \frac{n_5}{d_5} + \frac{n_3-n_4}{d_{27}} - \frac{n_4-n_6}{d_{33}} - \frac{n_4-n_6}{d_{52}} + \frac{n_6}{d_{55}} + \frac{n_3+n_5-n_6-n_7}{d_{28}} + \frac{n_3+n_5-n_6-n_7}{d_{47}} + \frac{n_3+n_5-n_6-n_7}{d_{28}} + \frac{n_3+n_5-n_6-n_7}{d_{47}} - \frac{n_3-n_7+n_9}{d_{13}} \\ \mathbb{I}[\{-\ell, k_1, k_2, \ell, k_4, k_3\}] = \frac{n_5}{d_5} + \frac{n_3-n_4}{d_{27}} - \frac{n_4-n_6}{d_{33}} - \frac{n_4-n_6}{d_{52}} + \frac{n_6}{d_{55}} + \frac{n_3+n_5-n_6-n_7}{d_{28}} + \frac{n_3+n_5-n_6-n_7}{d_{53}} + \frac{n_3+n_5-n_6-n_7}{d_{23}} + \frac{n_5-n_9+n_10}{d_{23}} + \frac{n_5-n_9+n_10}{d_{20}} \\ \mathbb{I}[\{-\ell, k_1, k_2, \ell, k_4, k_3\}] = \frac{n_3}{d_3} + \frac{n_4}{d_4} + \frac{n_4-n_6}{d_{27}} + \frac{n_4-n_6}{d_{33}} + \frac{n_3+n_5-n_6}{d_{1}} + \frac{n_3+n_5-n_6-n_7}{d_{25}} + \frac{n_3+n_5-n_6-n_7}{d_{47}} + \frac{n_3+n_5-n_6-n_7}{d_{53}} + \frac{n_3+n_5-n_6-n_7}{d_{13}} + \frac{n_4-n_7+n_9}{d_{13}} + \frac{n_4-n_7+n_10}{d_{17}} \\ \mathbb{I}[\{-\ell, k_1, k_3, k_2, k_4, \ell\}] = \frac{n_3}{d_3} + \frac{n_4-n_6}{d_{26}} + \frac{n_4-n_6}{d_{26}} + \frac{n_3+n_5-n_6}{d_{1}} + \frac{n_3+n_5-n_6-n_7}{d_{25}} + \frac{n_3+n_5-n_6-n_7}{d_{47}} + \frac{n_3+n_5-n_6-n_7}{d_{53}} + \frac{n_3+n_5-n_6-n_7}{d_{13}} + \frac{n_4-n_7+n_9}{d_{13}} + \frac{n_4-n_7+n_10}{d_{17}} + \frac{n_4-n_7+n_10}{d_{25}} + \frac{n_3+n_5-n_6-n_7}{d_{47}} + \frac{n_3+n_5-n_6-n_7}{d_{53}} + \frac{n_3+n_5-n_6-n_7}{d_{13}} + \frac{n_4-n_7+n_9}{d_{14}} + \frac{n_4-$

CAN INVERT OFF-SHELL:

 $\ell^2 \neq 0$

7 independent CO Pre-Intg

N=1 1-loop 4pt example:

7 off-shell masters, consider 7 color-ordered pre-Integrands

2nd. in terms of 7 masters:

$$\begin{split} \mathbb{I}\left[\left\{-\ell, \, k_{1}, \, k_{2}, \, k_{3}, \, k_{4}, \, \ell\right\}\right] &= \frac{n_{4}-n_{6}}{d_{27}} + \frac{n_{5}-n_{6}}{d_{2}} + \frac{n_{3}+n_{5}-n_{6}}{d_{1}} + \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{2}} \\ \mathbb{I}\left[\left\{-\ell, \, k_{1}, \, k_{2}, \, k_{3}, \, \ell, \, k_{4}\right\}\right] &= -\frac{n_{5}}{d_{5}} - \frac{n_{3}-n_{4}+n_{5}}{d_{2}} - \frac{n_{5}-n_{6}}{d_{35}} - \frac{n_{5}-n_{6}}{d_{56}} - \frac{n_{3}+n_{5}-n_{6}}{d_{1}} - \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{28}} \\ \mathbb{I}\left[\left\{-\ell, \, k_{1}, \, k_{2}, \, k_{4}, \, \ell, \, k_{3}\right\}\right] &= \frac{n_{3}}{d_{3}} - \frac{n_{3}-n_{4}+n_{5}}{d_{2}} - \frac{n_{3}-n_{4}+n_{5}}{d_{2}} - \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{2}} \\ \mathbb{I}\left[\left\{-\ell, \, k_{1}, \, k_{2}, \, k_{4}, \, \ell, \, k_{3}\right\}\right] &= -\frac{n_{3}}{d_{3}} - \frac{n_{3}-n_{4}}{d_{29}} - \frac{n_{3}-n_{4}}{d_{21}} + \frac{n_{3}-n_{4}+n_{5}}{d_{2}} - \frac{n_{4}+n_{5}}{d_{2}} - \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{1}} \\ \mathbb{I}\left[\left\{-\ell, \, k_{1}, \, k_{2}, \, \ell, \, k_{3}, \, k_{4}\right\}\right] &= \frac{n_{5}}{d_{3}} + \frac{n_{3}-n_{4}}{d_{29}} - \frac{n_{4}-n_{6}}{d_{31}} - \frac{n_{4}-n_{6}}{d_{2}} + \frac{n_{4}+n_{5}}{d_{2}} - \frac{n_{4}+n_{6}}{d_{2}} + \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{2}} - \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{28}} - \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{28}} - \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{47}} - \frac{n_{3}-n_{7}+n_{9}}{d_{13}} \\ \mathbb{I}\left[\left\{-\ell, \, k_{1}, \, k_{2}, \, \ell, \, k_{3}, \, k_{4}\right\}\right] &= \frac{n_{3}}{d_{3}} + \frac{n_{4}-n_{6}}{d_{29}} - \frac{n_{4}-n_{6}}{d_{33}} - \frac{n_{4}-n_{6}}{d_{52}} + \frac{n_{4}+n_{6}}{d_{6}} + \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{28}} + \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{60}} + \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{60}} + \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{60}} + \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{60}} + \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{60}} + \frac{n_{4}-n_{7}+n_{9}}{d_{13}} + \frac{n_{4}-n_{7}+n_{9}}{d_{14}} + \frac{n_{4}-n_{6}}{d_{20}} + \frac{n_{4}-n_{6}}{d_{20}} + \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{25}} + \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{47}} + \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{53}} + \frac{n_{3}+n_{5}-n_{6}-n_{7}}{d_{13}} + \frac{n_{4}-n_{7}+n_{9}}{d_{14}} + \frac{n_{4}-n_{7}}{d_{14}} + \frac{n_{4}-n_{6}}{d_{20}} + \frac{n_{4}-n_{7}}{d_{25}} + \frac{n_{4}-n_{7}+n_{9}}{d_{47}} + \frac{n_{4}-n_{7}+n_{9}}{d_{53}} + \frac{n_{4}-n_{7}+n_{9}}{d_{13}} + \frac{n_{4}-n_{7}+n_{9$$

CAN INVERT OFF-SHELL:

7 independent CO Pre-Intg

 $\ell^2 = 0$

Different than the 1-particle cut:

6 independent CO 1-particle cuts from (m-3)! tree-level!

After Jacobi, now have a color-kinematic satisfying representation at loop level -- no ansatz.

Asymmetric graphs can have Jacobi's imposed linearly on all edges but L

Conjecture: this is sufficient for double-copy to hold

Verification: Gravity amplitude must be checked on a spanning set of cuts by symmetrizing into symmetric functional representation.

Explicitly verified:1 loop 4-pt for N<=4 SYM 2 loop 4-pt for N=4 SYM

Exploring constructive all-multiplicity 1-loop proofs now

Summary: Presented path forward to find C/K satisfying representations without an ansatz.

There is a cautionary note, this way forward involves increasing the redundancy of graph descriptions — no free lunch, but at least a bounded complexity problem.

The HOPE

Should be a spring board to a description that starts collapsing the redundancy—we know it is possible in many situations!

May be an avenue to recycle formal all-multiplicity tree-level insight into all multiplicity loop-level insight

Will be a vehicle to get more c/k data at lowerloops/higher multiplicity in theories with less SUSY

Happy to help you play these games with your own non-planar integrands!

6. Classical Solutions

This is a scattering celebration, but I do want to take a second to mention the potential importance of a deeper understanding of classical solutions.

> Given all tree-level doubly-copy relations between YM and Gravity, can we expect classical solutions to GR+matter EOM as a double copy of solutions to YM+matter EOM?

(See also work of Saotome & Akhoury and combinations of Anastasiou, Borsten, Duff, Hughes, Nagy)

Monteiro, O'Connell, and White, along with

increasing list of collaborators are amassing evidence that the answer is **yes**, at least for a certain class of solutions. Monteiro, O'Connell, White '14

> Luna, Monteiro, O'Connell, White '15 Luna, Monteiro, Nicholson, O'Connell, White (to appear)

Monteiro, O'Connell, and White

Schwarzschild

$$egin{aligned} \mathbf{g}_{\mu
u} &- \eta_{\mu
u} = rac{\mathbf{2GM}}{\mathbf{r}} \mathbf{k}_{\mu} \mathbf{k}_{
u} \ \mathbf{k}_{\mu} &= \{\mathbf{1}, \mathbf{\hat{r}}\} \end{aligned}$$

Monteiro, O'Connell, and White

Schwarzschild

$$egin{aligned} \mathbf{g}_{\mu
u} &- \eta_{\mu
u} = rac{\mathbf{2}\mathbf{G}\mathbf{M}}{\mathbf{r}}\mathbf{k}_{\mu}\mathbf{k}_{
u} \ &\mathbf{k}_{\mu} = \{\mathbf{1},\mathbf{\hat{r}}\} \end{aligned}$$

The double copy of

$$\mathbf{A}_{\mu} = rac{\mathbf{2GM}}{\mathbf{r}} \mathbf{k}_{\mu}$$

abelianized point charge

Monteiro, O'Connell, and White

Monteiro, O'Connell, and White

Natural question:

What process double copies to Hawking radiation?

Monteiro, O'Connell, and White

Natural question:

What process double copies to Hawking radiation?

Suggestive answer:

Schwinger pair production Torroba, & JJMC (to appear)

Classical gravity is a Double Copy?

Remind you of some of the double-copy positives:

+ Constrained solutions => can exploit for technical simplicity in prediction

+ Web of relationships between theories

Open question: how far can this go?

